Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
World J Microbiol Biotechnol ; 39(6): 161, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37067621

ABSTRACT

It is well acknowledged that microplastics are a major environmental problem and that the use of plastics, both petro- and bio- based, should be reduced. Nevertheless, it is also a necessity to reduce the amount of the already spread plastics. These cannot be easily degraded in the nature and accumulate in the food supply chain with major danger for animals and human life. It has been shown in the literature that advanced oxidation processes (AOPs) modify the surface of polylactic acid (PLA) materials in a way that bacteria more efficiently dock on their surface and eventually degrade them. In the present work we investigated the influence of different AOPs (ultrasounds, ultraviolet irradiation, and their combination) on the biodegradability of PLA films treated for different times between 1 and 6 h. The pre-treated samples have been degraded using a home model compost as well as a cocktail of commercial enzymes at mesophilic temperatures (37 °C and 42 °C, respectively). Degradation degree has been measured and degradation products have been identified. Excellent degradation of PLA films has been achieved with enzyme cocktail containing commercial alkaline proteases and lipases of up to 90% weight loss. For the first time, we also report valorization of PLA into bacterial nanocellulose after enzymatic hydrolysis of the samples.


Subject(s)
Composting , Plastics , Animals , Humans , Polyesters , Bacteria
2.
Ultrason Sonochem ; 76: 105627, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34130189

ABSTRACT

New biotechnological processes using microorganisms and/or enzymes to convert carbonaceous resources, either biomass or depolymerized plastics into a broad range of different bioproducts are recognized for their high potential for reduced energy consumption and reduced GHG emissions. However, the hydrophobicity, high molecular weight, chemical and structural composition of most of them hinders their biodegradation. A solution to reduce the impact of non-biodegradable polymers spread in the environment would be to make them biodegradable. Different approaches are evaluated for enhancing their biodegradation. The aim of this work is to develop and optimize the ultrasonication (US) and UV photodegradation and their combination as well as dielectric barrier discharge (DBD) plasma as pre-treatment technologies, which change surface properties and enhance the biodegradation of plastic by surface oxidation and thus helping bacteria to dock on them. Polylactic acid (PLA) has been chosen as a model polymer to investigate its surface degradation by US, UV, and DBD plasma using surface characterization methods like X-ray Photoelectron Spectroscopy (XPS) and Confocal Laser Microscopy (CLSM), Atomic Force Microscopy (AFM) as well as FT-IR and drop contour analysis. Both US and UV affect the surface properties substantially by eliminating the oxygen content of the polymer but in a different way, while plasma oxidizes the surface.


Subject(s)
Plastics/chemistry , Polyesters/chemistry , Recycling/economics , Surface Properties
3.
Ultrason Sonochem ; 71: 105367, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33125964

ABSTRACT

In the present work, ultrasound irradiation, photocatalysis with TiO2, Fenton/Photo-Fenton reaction, and the combination of those techniques were investigated for the decolorization of industrial dyes in order to study their synergy. Three azo dyes were selected from the weaving industry. Their degradation was examined via UV illumination, Fenton and Photo-Fenton reaction as well as ultrasound irradiation at low (20 kHz) and high frequencies (860 kHz). In these experiments, we investigated the simultaneous action of the ultrasound and UV irradiation by varying parameters like the duration of photocatalysis and ultrasound irradiation frequency. At the same time, US power, temperature, amount of TiO2 photocatalyst and amount of Fenton reagent remained constant. Due to their diverse structure, each azo dye showed different degradation levels using different combinations of the above-mentioned Advanced Oxidation Processes (AOPs). The Photo-Fenton reagent is more effective with US 20 kHz and US 860 kHz for the azo dyes originated from the weaving industry at pH = 3 as compared to pH = 6.8. The combination of the Photo-Fenton reaction with 860 kHz ultrasound irradiation for the same dye gave an 80% conversion at the same time. Experiments have shown a high activity during the first two hours. After that threshold, the reaction rate is decreased. FT-IR and TOC measurements prove the decolorization due to the destruction of the chromophore groups but not complete mineralization of the dyes.

4.
Ultrason Sonochem ; 69: 105250, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32668385

ABSTRACT

Rhenium oxide nanoparticles have been prepared using ultrasonication at 20 kHz. Samples characterization was committed via SEM-EDX, TEM, XRD, and Raman spectroscopy. Various experimental parameters were examined, including precursor/substrate amounts, ultrasonication intensity, and type of solvent used. Insights to the agglomeration of the prepared nanoparticles depending on the preparation parameters are given. As ultrasonic source we used either an ultrasonic probe by Sonics & Materials Inc. (20 kHz, 750 W net output) or a Bandelin SONOPULS HD 3200 ultrasound generator (20 kHz, 200 W net output) at intensities between 30 and 100 W/cm2. The rhenium oxide nanoparticles haven been decorated on state-of-the-art anode materials (NiO/GDC) for solid oxide fuel cells (SOFCs) in order to prepare catalytically more active anode powders. These experiments revealed that ultrasonication intensity and solvents used are able to affect final nanoparticles size distribution and morphology. At the same time, ratio of precursor and substrate compounds amounts as well as ultrasonication intensity and duration were all found to affect the decoration loading extend of nanoformations on substrate powders. The results showing the influence of the above-mentioned parameters allowed for the quantification of the effects on the loading and the preferable sites of the decoration.

5.
Ultrason Sonochem ; 59: 104715, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31421617

ABSTRACT

Sonochemistry was used for the metal oxides nanoparticle synthesis. All experiments were run using a BANDELIN Sonopuls HD 3200 ultrasonic generator (20 kHz, 200 W net output) with a ultrasonic probe in thermostated environment of 80 °C under ambient air. At the same time, ultrasonication activity achieved their decoration on state-of-the-art fuel cell anode powders. These modified powders shall be used in solid oxide and ceramic proton exchange membrane fuel cells anode sites. Metal oxide nanoformations synthesized were those of tungsten and molybdenum. In case of sonochemical synthesis, organometallic compounds dissolved in organic solvents played the role of precursors. Experiments of metal oxides synthesis revealed that ultrasonication intensity and solvents are able to affect final nanoparticles size distribution and morphology. At the same time, ratio of precursor and substrate compounds amounts as well as ultrasonication intensity and duration were all found to affect the decoration loading extent of nanoformations on substrates. Transmission electron microscopy was mainly used for identifying the final product of each synthesis attempt. Moreover, selected area diffraction of characteristic formations examined, gave important information about the nanocrystallinity and stoichiometry of all materials synthesized.

6.
Ultrason Sonochem ; 52: 106-119, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30477790

ABSTRACT

Metal-organic frameworks (MOFs) have received a lot of attention due to their unique properties and abundant functionalities. Permanent porosity and high surface area are just a few traits that have made them attractive to researchers. They can be prepared as task-specific materials by exploiting the functional group variety and tuning their size and geometry. The main purpose of this review is to present an alternative method of preparing MOF crystals and underline the advantages of ultrasound assisted (sonochemical) synthesis. State of the art ultrasound assisted techniques for the preparation of MOFs in nanoscale are presented. Optimization of morphology and particle size is highlighted throughout this work, as we discuss the effects of various factors, such as energy input, reagent concentration, adequate solvents, reaction time and more.

7.
Ultrason Sonochem ; 35(Pt B): 591-597, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27217306

ABSTRACT

Simultaneous electrocatalytic Pt-nanoparticle synthesis and decoration of Vulcan XC-72 carbon black substrate was achieved in a novel one-step-process, combining galvanostatic pulsed electrodeposition and pulsed ultrasonication with high power, low-frequency (20kHz) ultrasound. Aqueous chloroplatinic acid precursor baths, as well as carbon black suspensions in the former, were examined and decoration was proven by a combination of characterization methods, namely: dynamic light scattering, transmission electron microscopy, scanning electron microscopy with EDX-analysis and cyclic voltammetry. In particular, PVP was shown to have a beneficial stabilizing effect against free nanoparticle aggregation, ensuring narrow size distributions of the nanoparticles synthesized, but is also postulated to prevent the establishment of a strong metal-substrate interaction. Current pulse amplitude was identified as the most critical nanoparticle size-determining parameters, while only small size particles, under 10nm, appeared to be attached to carbon black.

8.
Ultrason Sonochem ; 31: 295-301, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26964952

ABSTRACT

The most important drawback of the use of TiO2 as photocatalyst is its lack of activity under visible light. To overcome this problem, the surface modification of commercial micro-sized TiO2 by means of high-energy ultrasound (US), employing CuCl2 as precursor molecule to obtain both metallic copper as well as copper oxides species at the TiO2 surface, is here. We have prepared samples with different copper content, in order to evaluate its impact on the photocatalytic performances of the semiconductor, and studied in particular the photodegradation in the gas phase of some volatile organic molecules (VOCs), namely acetone and acetaldehyde. We used a LED lamp in order to have only the contribution of the visible wavelengths to the TiO2 activation (typical LED lights have no emission in the UV region). We employed several techniques (i.e., HR-TEM, XRD, FT-IR and UV-Vis) in order to characterize the prepared samples, thus evidencing different sample morphologies as a function of the various copper content, with a coherent correlation between them and the photocatalytic results. Firstly, we demonstrated the possibility to use US to modify the TiO2, even when it is commercial and micro-sized as well; secondly, by avoiding completely the UV irradiation, we confirmed that pure TiO2 is not activated by visible light. On the other hand, we showed that copper metal and metal oxides nanoparticles strongly and positively affect its photocatalytic activity.

9.
Ultrason Sonochem ; 21(6): 1939-47, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24561110

ABSTRACT

Decoration of SOFC anode cermets with metal nanoparticles (NPs) enchance their ability and stability in natural gas to hydrogen reform. A novel sonoelectrochemical approach of Au-NPs synthesis (mean 12.31±2.69nm) is suggested, according to which the sonication is held constant while the electrochemical activity is either pulsed or continuous. The gold colloidal solution is cosonicated with state of the art cermet powder to yield particles decorated with Au-NPs. Nevertheless sonochemical routes of mixed molybdenum, rhenium or tungsten mixed oxides synthesis are utilized in order to decorate SOFC anode cermets. The decoration loading achieved spanned from 0.1 to 10.0wt.%.

SELECTION OF CITATIONS
SEARCH DETAIL
...