Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol Exp ; 8(1): 63, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764066

ABSTRACT

BACKGROUND: Emphysema influences the appearance of lung tissue in computed tomography (CT). We evaluated whether this affects lung nodule detection by artificial intelligence (AI) and human readers (HR). METHODS: Individuals were selected from the "Lifelines" cohort who had undergone low-dose chest CT. Nodules in individuals without emphysema were matched to similar-sized nodules in individuals with at least moderate emphysema. AI results for nodular findings of 30-100 mm3 and 101-300 mm3 were compared to those of HR; two expert radiologists blindly reviewed discrepancies. Sensitivity and false positives (FPs)/scan were compared for emphysema and non-emphysema groups. RESULTS: Thirty-nine participants with and 82 without emphysema were included (n = 121, aged 61 ± 8 years (mean ± standard deviation), 58/121 males (47.9%)). AI and HR detected 196 and 206 nodular findings, respectively, yielding 109 concordant nodules and 184 discrepancies, including 118 true nodules. For AI, sensitivity was 0.68 (95% confidence interval 0.57-0.77) in emphysema versus 0.71 (0.62-0.78) in non-emphysema, with FPs/scan 0.51 and 0.22, respectively (p = 0.028). For HR, sensitivity was 0.76 (0.65-0.84) and 0.80 (0.72-0.86), with FPs/scan of 0.15 and 0.27 (p = 0.230). Overall sensitivity was slightly higher for HR than for AI, but this difference disappeared after the exclusion of benign lymph nodes. FPs/scan were higher for AI in emphysema than in non-emphysema (p = 0.028), while FPs/scan for HR were higher than AI for 30-100 mm3 nodules in non-emphysema (p = 0.009). CONCLUSIONS: AI resulted in more FPs/scan in emphysema compared to non-emphysema, a difference not observed for HR. RELEVANCE STATEMENT: In the creation of a benchmark dataset to validate AI software for lung nodule detection, the inclusion of emphysema cases is important due to the additional number of FPs. KEY POINTS: • The sensitivity of nodule detection by AI was similar in emphysema and non-emphysema. • AI had more FPs/scan in emphysema compared to non-emphysema. • Sensitivity and FPs/scan by the human reader were comparable for emphysema and non-emphysema. • Emphysema and non-emphysema representation in benchmark dataset is important for validating AI.


Subject(s)
Artificial Intelligence , Pulmonary Emphysema , Tomography, X-Ray Computed , Humans , Male , Middle Aged , Female , Tomography, X-Ray Computed/methods , Pulmonary Emphysema/diagnostic imaging , Software , Sensitivity and Specificity , Lung Neoplasms/diagnostic imaging , Aged , Radiation Dosage , Solitary Pulmonary Nodule/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods
2.
Comput Biol Med ; 169: 107871, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154157

ABSTRACT

BACKGROUND: During lung cancer screening, indeterminate pulmonary nodules (IPNs) are a frequent finding. We aim to predict whether IPNs are resolving or non-resolving to reduce follow-up examinations, using machine learning (ML) models. We incorporated dedicated techniques to enhance prediction explainability. METHODS: In total, 724 IPNs (size 50-500 mm3, 575 participants) from the Dutch-Belgian Randomized Lung Cancer Screening Trial were used. We implemented six ML models and 14 factors to predict nodule disappearance. Random search was applied to determine the optimal hyperparameters on the training set (579 nodules). ML models were trained using 5-fold cross-validation and tested on the test set (145 nodules). Model predictions were evaluated by utilizing the recall, precision, F1 score, and the area under the receiver operating characteristic curve (AUC). The best-performing model was used for three feature importance techniques: mean decrease in impurity (MDI), permutation feature importance (PFI), and SHAPley Additive exPlanations (SHAP). RESULTS: The random forest model outperformed the other ML models with an AUC of 0.865. This model achieved a recall of 0.646, a precision of 0.816, and an F1 score of 0.721. The evaluation of feature importance achieved consistent ranking across all three methods for the most crucial factors. The MDI, PFI, and SHAP methods highlighted volume, maximum diameter, and minimum diameter as the top three factors. However, the remaining factors revealed discrepant ranking across methods. CONCLUSION: ML models effectively predict IPN disappearance using participant demographics and nodule characteristics. Explainable techniques can assist clinicians in developing understandable preliminary assessments.


Subject(s)
Lung Neoplasms , Humans , Early Detection of Cancer , Machine Learning , ROC Curve , Randomized Controlled Trials as Topic
3.
Heliyon ; 9(6): e17104, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37484314

ABSTRACT

BACKGROUND: Deep learning is an important means to realize the automatic detection, segmentation, and classification of pulmonary nodules in computed tomography (CT) images. An entire CT scan cannot directly be used by deep learning models due to image size, image format, image dimensionality, and other factors. Between the acquisition of the CT scan and feeding the data into the deep learning model, there are several steps including data use permission, data access and download, data annotation, and data preprocessing. This paper aims to recommend a complete and detailed guide for researchers who want to engage in interdisciplinary lung nodule research of CT images and Artificial Intelligence (AI) engineering. METHODS: The data preparation pipeline used the following four popular large-scale datasets: LIDC-IDRI (Lung Image Database Consortium image collection), LUNA16 (Lung Nodule Analysis 2016), NLST (National Lung Screening Trial) and NELSON (The Dutch-Belgian Randomized Lung Cancer Screening Trial). The dataset preparation is presented in chronological order. FINDINGS: The different data preparation steps before deep learning were identified. These include both more generic steps and steps dedicated to lung nodule research. For each of these steps, the required process, necessity, and example code or tools for actual implementation are provided. DISCUSSION AND CONCLUSION: Depending on the specific research question, researchers should be aware of the various preparation steps required and carefully select datasets, data annotation methods, and image preprocessing methods. Moreover, it is vital to acknowledge that each auxiliary tool or code has its specific scope of use and limitations. This paper proposes a standardized data preparation process while clearly demonstrating the principles and sequence of different steps. A data preparation pipeline can be quickly realized by following these proposed steps and implementing the suggested example codes and tools.

4.
Semin Radiat Oncol ; 32(4): 415-420, 2022 10.
Article in English | MEDLINE | ID: mdl-36202443

ABSTRACT

Application of Artificial Intelligence (AI) tools has recently gained interest in the fields of medical imaging and radiotherapy. Even though there have been many papers published in these domains in the last few years, clinical assessment of the proposed AI methods is limited due to the lack of standardized protocols that can be used to validate the performance of the developed tools. Moreover, each stakeholder uses their own methods, tools, and evaluation criteria. Communication between different stakeholders is limited or absent, which makes it hard to easily exchange models between different clinics. These issues are not limited to radiotherapy but exist in every AI application domain. To deal with these issues, methods like the Machine Learning Canvas, Datasets for Datasheets, and Model cards have been developed. They aim to provide information of the whole creation pipeline of AI solutions, of the datasets used to develop AI, along with their biases, as well as to facilitate easier collaboration/communication between different stakeholders and facilitate the clinical introduction of AI. This work introduces the concepts of these 3 open-source solutions including the author's experiences applying them to AI applications for radiotherapy.


Subject(s)
Artificial Intelligence , Radiation Oncology , Humans , Machine Learning , Reference Standards
5.
Cancers (Basel) ; 14(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36010861

ABSTRACT

Artificial Intelligence (AI) algorithms for automatic lung nodule detection and classification can assist radiologists in their daily routine of chest CT evaluation. Even though many AI algorithms for these tasks have already been developed, their implementation in the clinical workflow is still largely lacking. Apart from the significant number of false-positive findings, one of the reasons for that is the bias that these algorithms may contain. In this review, different types of biases that may exist in chest CT AI nodule detection and classification algorithms are listed and discussed. Examples from the literature in which each type of bias occurs are presented, along with ways to mitigate these biases. Different types of biases can occur in chest CT AI algorithms for lung nodule detection and classification. Mitigation of them can be very difficult, if not impossible to achieve completely.

SELECTION OF CITATIONS
SEARCH DETAIL
...