Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Dyn ; 241(4): 718-31, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22411553

ABSTRACT

BACKGROUND: Hox transcription factors play a critical role in the specification of motoneuron subtypes within the spinal cord. Our previous work showed that two orthologous members of this family, Hoxd10 and Hoxd11, exert opposing effects on motoneuron development in the lumbosacral (LS) spinal cord of the embryonic chick: Hoxd10 promotes the development of lateral motoneuron subtypes that project to dorsal limb muscles, while Hoxd11 represses the development of lateral subtypes in favor of medial subtypes that innervate ventral limb muscles and axial muscles. The striking degree of homology between the DNA-binding homeodomains of Hoxd10 and Hoxd11 suggested that non-homeodomain regions mediate their divergent effects. In the present study, we investigate the relative contributions of homeodomain and non-homeodomain regions of Hoxd10 and Hoxd11 to motoneuron specification. RESULTS: Using in ovo electroporation to express chimeric and mutant constructs in LS motoneurons, we find that both the homeodomain and non-homeodomain regions of Hoxd10 are necessary to specify lateral motoneurons. In contrast, non-homeodomain regions of Hoxd11 are sufficient to repress lateral motoneuron fates in favor of medial fates. CONCLUSIONS: Together, our data demonstrate that even closely related Hox orthologues rely on distinct combinations of homeodomain-dependent and -independent mechanisms to specify motoneuron identity.


Subject(s)
Avian Proteins/physiology , Chick Embryo/physiology , Homeodomain Proteins/physiology , Motor Neurons/physiology , Spinal Cord/embryology , Transcription Factors/physiology , Animals , Cell Differentiation/genetics , Chick Embryo/embryology , Gene Expression Regulation, Developmental , Motor Neurons/cytology
2.
Dev Neurobiol ; 72(2): 167-85, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21739615

ABSTRACT

Proper movement of the vertebrate eye requires the formation of precisely patterned axonal connections linking cranial somatic motoneurons, located at defined positions in the ventral midbrain and hindbrain, with extraocular muscles. The aim of this research was to assess the relative contributions of intrinsic, population-specific properties and extrinsic, outgrowth site-specific cues during the early stages of abducens and oculomotor nerve development in avian embryos. This was accomplished by surgically transposing midbrain and caudal hindbrain segments, which had been pre-labeled by electroporation with an EGFP construct. Graft-derived EGFP+ oculomotor axons entering a hindbrain microenvironment often mimicked an abducens initial pathway and coursed cranially. Similarly, some EGFP+ abducens axons entering a midbrain microenvironment mimicked an oculomotor initial pathway and coursed ventrally. Many but not all of these axons subsequently projected to extraocular muscles that they would not normally innervate. Strikingly, EGFP+ axons also took initial paths atypical for their new location. Upon exiting from a hindbrain position, most EGFP+ oculomotor axons actually coursed ventrally and joined host branchiomotor nerves, whose neurons share molecular features with oculomotor neurons. Similarly, upon exiting from a midbrain position, some EGFP+ abducens axons turned caudally, elongated parallel to the brainstem, and contacted the lateral rectus muscle, their originally correct target. These data reveal an interplay between intrinsic properties that are unique to oculomotor and abducens populations and shared ability to recognize and respond to extrinsic directional cues. The former play a prominent role in initial pathway choices, whereas the latter appear more instructive during subsequent directional choices.


Subject(s)
Abducens Nerve/cytology , Abducens Nerve/embryology , Axons/physiology , Neurons/cytology , Oculomotor Nerve/cytology , Oculomotor Nerve/embryology , Animals , Chick Embryo , Gene Expression Regulation, Developmental/physiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mesencephalon/embryology , Mesencephalon/transplantation , Microinjections , Neural Tube/transplantation , Neurofilament Proteins/metabolism , Neurons/physiology , Quail/embryology , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...