Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 8(12): e3384, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25521296

ABSTRACT

BACKGROUND: Infection with the protozoan Trypanosoma cruzi manifests in mammals as Chagas heart disease. The treatment available for chagasic cardiomyopathy is unsatisfactory. METHODS/PRINCIPAL FINDINGS: To study the disease pathology and its inhibition, we employed a syngeneic chicken model refractory to T. cruzi in which chickens hatched from T. cruzi inoculated eggs retained parasite kDNA (1.4 kb) minicircles. Southern blotting with EcoRI genomic DNA digests revealed main 18 and 20 kb bands by hybridization with a radiolabeled minicircle sequence. Breeding these chickens generated kDNA-mutated F1, F2, and F3 progeny. A targeted-primer TAIL-PCR (tpTAIL-PCR) technique was employed to detect the kDNA integrations. Histocompatible reporter heart grafts were used to detect ongoing inflammatory cardiomyopathy in kDNA-mutated chickens. Fluorochromes were used to label bone marrow CD3+, CD28+, and CD45+ precursors of the thymus-dependent CD8α+ and CD8ß+ effector cells that expressed TCRγδ, vß1 and vß2 receptors, which infiltrated the adult hearts and the reporter heart grafts. CONCLUSIONS/SIGNIFICANCE: Genome modifications in kDNA-mutated chickens can be associated with disruption of immune tolerance to compatible heart grafts and with rejection of the adult host's heart and reporter graft, as well as tissue destruction by effector lymphocytes. Autoimmune heart rejection was largely observed in chickens with kDNA mutations in retrotransposons and in coding genes with roles in cell structure, metabolism, growth, and differentiation. Moreover, killing the sick kDNA-mutated bone marrow cells with cytostatic and anti-folate drugs and transplanting healthy marrow cells inhibited heart rejection. We report here for the first time that healthy bone marrow cells inhibited heart pathology in kDNA+ chickens and thus prevented the genetically driven clinical manifestations of the disease.


Subject(s)
Autoimmune Diseases/prevention & control , Bone Marrow Transplantation , Chagas Cardiomyopathy/prevention & control , Chagas Disease/therapy , Animals , Apoptosis , Chickens/genetics , DNA, Kinetoplast/genetics , Graft Rejection , Immunization , Mutation , Myocardium/pathology , Trypanosoma cruzi/genetics , Trypanosoma cruzi/immunology
2.
J Proteomics ; 75(13): 3829-41, 2012 Jul 16.
Article in English | MEDLINE | ID: mdl-22579750

ABSTRACT

Human populations are constantly plagued by hematophagous insects' bites, in particular the triatomine insects that are vectors of the Trypanosoma cruzi agent in Chagas disease. The pharmacologically-active molecules present in the salivary glands of hematophagous insects are injected into the human skin to initiate acquisition of blood meals. Sets of vasodilators, anti-platelet aggregators, anti-coagulants, immunogenic polypeptides, anesthetics, odorants, antibiotics, and detoxifying molecules have been disclosed with the aid of proteomics and recombinant cDNA techniques. These molecules can provide insights about the insect-pathogen-host interactions essential for understanding the physiopathology of the insect bite. The data and information presented in this review aim for the development of new drugs to prevent insect bites and the insect-transmitted endemic of Chagas disease.


Subject(s)
Hemostasis/drug effects , Insect Bites and Stings/physiopathology , Salivary Proteins and Peptides/pharmacology , Animals , Apyrase/pharmacology , Chagas Disease/transmission , Host-Pathogen Interactions , Humans , Salivary Glands/chemistry , Salivary Proteins and Peptides/chemistry , Triatoma/genetics , Vasodilator Agents/pharmacology
3.
Clin Microbiol Rev ; 24(3): 592-630, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21734249

ABSTRACT

Acute Trypanosoma cruzi infections can be asymptomatic, but chronically infected individuals can die of Chagas' disease. The transfer of the parasite mitochondrial kinetoplast DNA (kDNA) minicircle to the genome of chagasic patients can explain the pathogenesis of the disease; in cases of Chagas' disease with evident cardiomyopathy, the kDNA minicircles integrate mainly into retrotransposons at several chromosomes, but the minicircles are also detected in coding regions of genes that regulate cell growth, differentiation, and immune responses. An accurate evaluation of the role played by the genotype alterations in the autoimmune rejection of self-tissues in Chagas' disease is achieved with the cross-kingdom chicken model system, which is refractory to T. cruzi infections. The inoculation of T. cruzi into embryonated eggs prior to incubation generates parasite-free chicks, which retain the kDNA minicircle sequence mainly in the macrochromosome coding genes. Crossbreeding transfers the kDNA mutations to the chicken progeny. The kDNA-mutated chickens develop severe cardiomyopathy in adult life and die of heart failure. The phenotyping of the lesions revealed that cytotoxic CD45, CD8(+) γδ, and CD8α(+) T lymphocytes carry out the rejection of the chicken heart. These results suggest that the inflammatory cardiomyopathy of Chagas' disease is a genetically driven autoimmune disease.


Subject(s)
Chagas Disease/immunology , Chagas Disease/parasitology , Trypanosoma cruzi/physiology , Animals , Autoimmunity/immunology , Chickens , Disease Models, Animal , Humans , Trypanosoma cruzi/immunology
4.
PLoS Negl Trop Dis ; 5(3): e1000, 2011 Mar 29.
Article in English | MEDLINE | ID: mdl-21468314

ABSTRACT

BACKGROUND: The administration of anti-trypanosome nitroderivatives curtails Trypanosoma cruzi infection in Chagas disease patients, but does not prevent destructive lesions in the heart. This observation suggests that an effective treatment for the disease requires understanding its pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: To understand the origin of clinical manifestations of the heart disease we used a chicken model system in which infection can be initiated in the egg, but parasite persistence is precluded. T. cruzi inoculation into the air chamber of embryonated chicken eggs generated chicks that retained only the parasite mitochondrial kinetoplast DNA minicircle in their genome after eight days of gestation. Crossbreeding showed that minicircles were transferred vertically via the germ line to chicken progeny. Minicircle integration in coding regions was shown by targeted-primer thermal asymmetric interlaced PCR, and detected by direct genomic analysis. The kDNA-mutated chickens died with arrhythmias, shortness of breath, cyanosis and heart failure. These chickens with cardiomyopathy had rupture of the dystrophin and other genes that regulate cell growth and differentiation. Tissue pathology revealed inflammatory dilated cardiomegaly whereby immune system mononuclear cells lyse parasite-free target heart fibers. The heart cell destruction implicated a thymus-dependent, autoimmune; self-tissue rejection carried out by CD45(+), CD8γδ(+), and CD8α lymphocytes. CONCLUSIONS/SIGNIFICANCE: These results suggest that genetic alterations resulting from kDNA integration in the host genome lead to autoimmune-mediated destruction of heart tissue in the absence of T. cruzi parasites.


Subject(s)
Chagas Cardiomyopathy/pathology , Disease Models, Animal , Poultry Diseases/pathology , Trypanosoma cruzi/pathogenicity , Animals , Autoimmune Diseases/pathology , CD8 Antigens/analysis , Chickens , DNA, Circular/genetics , DNA, Circular/isolation & purification , DNA, Mitochondrial/genetics , DNA, Mitochondrial/isolation & purification , DNA, Protozoan/genetics , DNA, Protozoan/isolation & purification , Heart Failure , Host-Parasite Interactions , Leukocyte Common Antigens/analysis , Lymphocyte Subsets/chemistry , Lymphocyte Subsets/immunology , Myocarditis/pathology , Myocardium/pathology , Polymerase Chain Reaction/methods , Trypanosoma cruzi/genetics
5.
PLoS One ; 5(2): e9181, 2010 Feb 12.
Article in English | MEDLINE | ID: mdl-20169193

ABSTRACT

Interspecies DNA transfer is a major biological process leading to the accumulation of mutations inherited by sexual reproduction among eukaryotes. Lateral DNA transfer events and their inheritance has been challenging to document. In this study we modified a thermal asymmetric interlaced PCR by using additional targeted primers, along with Southern blots, fluorescence techniques, and bioinformatics, to identify lateral DNA transfer events from parasite to host. Instances of naturally occurring human infections by Trypanosoma cruzi are documented, where mitochondrial minicircles integrated mainly into retrotransposable LINE-1 of various chromosomes. The founders of five families show minicircle integrations that were transferred vertically to their progeny. Microhomology end-joining of 6 to 22 AC-rich nucleotide repeats in the minicircles and host DNA mediates foreign DNA integration. Heterogeneous minicircle sequences were distributed randomly among families, with diversity increasing due to subsequent rearrangement of inserted fragments. Mosaic recombination and hitchhiking on retrotransposition events to different loci were more prevalent in germ line as compared to somatic cells. Potential new genes, pseudogenes, and knockouts were identified. A pathway of minicircle integration and maintenance in the host genome is suggested. Thus, infection by T. cruzi has the unexpected consequence of increasing human genetic diversity, and Chagas disease may be a fortuitous share of negative selection. This demonstration of contemporary transfer of eukaryotic DNA to the human genome and its subsequent inheritance by descendants introduces a significant change in the scientific concept of evolutionary biology and medicine.


Subject(s)
Chagas Disease/genetics , DNA, Protozoan/genetics , Gene Transfer, Horizontal , Trypanosoma cruzi/genetics , Adolescent , Adult , Aged , Animals , Brazil , Chagas Disease/parasitology , Child , Female , Genome, Human/genetics , Geography , Host-Parasite Interactions/genetics , Humans , In Situ Hybridization, Fluorescence , Long Interspersed Nucleotide Elements/genetics , Male , Middle Aged , Molecular Sequence Data , Pedigree , Recombination, Genetic , Sequence Analysis, DNA , Trypanosoma cruzi/physiology , U937 Cells , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...