ABSTRACT
The enzymes 1,2-diacylglycerol cholinephosphotrans-ferase (CPT) and lysophosphatidylcholine acyltransferase (LPCAT) are important in lipid metabolism in soybean seeds. Thus, understand-ing the genes that encode these enzymes may enable their modification and aid the improvement of soybean oil quality. In soybean, the genes encoding these enzymes have not been completely described; there-fore, this study aimed to identify, characterize, and analyze the in silico expression of these genes in soybean. We identified two gene models encoding CPT and two gene models encoding LPCAT, one of which presented an alternative transcript. The sequences were positioned on the physical map of soybean and the promoter regions were analyzed. Cis-elements responsible for seed-specific expression and responses to biotic and abiotic stresses were identified. Virtual expression analysis of the gene models for CPT and LPCAT indicated that these genes are expressed under different stress conditions, in somatic embryos during differentiation, in immature seeds, root tissues, and calli. Putative ami-no acid sequences revealed the presence of transmembrane domains, and analysis of the cellular localization of these enzymes revealed they are located in the endoplasmic reticulum.
Subject(s)
1-Acylglycerophosphocholine O-Acyltransferase/genetics , Diacylglycerol Cholinephosphotransferase/genetics , Endoplasmic Reticulum/enzymology , Glycine max/genetics , Plant Proteins/genetics , 1-Acylglycerophosphocholine O-Acyltransferase/chemistry , 1-Acylglycerophosphocholine O-Acyltransferase/metabolism , Alternative Splicing , Amino Acid Sequence , Computer Simulation , Diacylglycerol Cholinephosphotransferase/chemistry , Diacylglycerol Cholinephosphotransferase/metabolism , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/ultrastructure , Gene Expression , Lipid Metabolism/genetics , Models, Genetic , Physical Chromosome Mapping , Plant Cells/enzymology , Plant Cells/ultrastructure , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Roots/cytology , Plant Roots/enzymology , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seeds/cytology , Seeds/enzymology , Sequence Alignment , Glycine max/cytology , Glycine max/enzymologyABSTRACT
In this study, Lactococcus lactis was engineered to express mutated internalin A on its surface and to secrete large amounts of listeriolysin O (LLO) in order to improve its potential as a vehicle for DNA vaccination. Western blotting experiments demonstrated that the bacterium expressed LLO in both the cytoplasmic and extracellular compartments, with higher quantities found in the culture supernatants. A hemolytic assay showed that the recombinant strain secreted 250 ng active LLO/mg total protein. This mInlA/LLO-producing strain of L. lactis may be used as an alternative tool in DNA vaccination against a number of infectious diseases or in cancer therapy.
Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Toxins/genetics , Bacterial Toxins/immunology , Heat-Shock Proteins/genetics , Heat-Shock Proteins/immunology , Hemolysin Proteins/genetics , Hemolysin Proteins/immunology , Lactococcus lactis/genetics , Listeria monocytogenes/immunology , Mutation , Recombinant Proteins , Bacterial Vaccines , Cell Membrane/metabolism , Gene Expression , Hemolysis , Lactococcus lactis/metabolism , VaccinationABSTRACT
In this study, we investigated the effects of the flavonoid rutin (3,3',4',5,7-pentahydroxyflavone-3-rutinoside) on glioma cells, using the highly proliferative human cell line GL-15 as a model. We observed that rutin (50-100µM) reduced proliferation and viability of GL-15 cells, leading to decreased levels of ERK1/2 phosphorylation (P-ERK1/2) and accumulation of cells in the G2 phase of the cell cycle. On the other hand, 87.4% of GL-15 cells exposed to 100µM rutin entered apoptosis, as revealed by flow cytometry after AnnexinV/PI staining. Nuclear condensation and DNA fragmentation were also observed, further confirming that apoptosis had occurred. Moreover, the remaining cells that were treated with 50µM rutin presented a morphological pattern of astroglial differentiation in culture, characterised by a condensed cell body and thin processes with overexpression of GFAP. Because of its capacity to induce differentiation and apoptosis in cultured human glioblastoma cells, rutin could be considered as a potential candidate for malignant gliomas treatment.
ABSTRACT
Dehydromonocrotaline (DHMC) is the main monocrotaline active cytochrome P450's metabolite, and has already been assessed in the CNS of experimentally intoxicated rats. DHMC effects were here investigated toward rat astroglial primary cultures regarding cytotoxicity, morphological changes and regulation of GFAP expression. Cells, grown in DMEM supplemented medium, were treated with 0.1-500 microM DHMC, during 24- and 72-h. According to MTT and LDH tests, DHMC was toxic to astrocytes after 24-h exposure at 1 microM, and induced membrane damages at 500 microM. Rosenfeld dying showed hypertrophic astrocytes after 72-h exposure to 0.1-1 microM DHMC. GFAP immunocytochemistry and western immunoblot revealed an increase of GFAP labelling and expression, suggesting an astrogliotic reaction to low concentrations of DHMC. At higher concentrations (10-500 microM), astrocytes shrank their bodies and retracted their processes, presenting a more polygonal phenotype and a weaker expression on GFAP labelling Nuclear chromatin staining by Hoechst-33258 dye, revealed condensed and fragmented chromatin in an important proportion (+/-30%) of the astrocytes exposed to 100-500 microM DHMC, suggesting signs of apoptosis. Our results confirm a cytotoxic and dose-dependent effect of DHMC on cultures of rat cortical astrocytes, leading to apoptotic figures. These effects might be related to the neurological damages and clinical signs observed in animals intoxicated by Crotalaria.
Subject(s)
Alkylating Agents/toxicity , Astrocytes/drug effects , Glial Fibrillary Acidic Protein/metabolism , Monocrotaline/analogs & derivatives , Animals , Animals, Newborn , Apoptosis/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Cell Enlargement/drug effects , Cell Membrane/drug effects , Cell Membrane/enzymology , Cell Nucleus/drug effects , Cell Nucleus/pathology , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Monocrotaline/toxicity , Rats , Rats, WistarABSTRACT
By means of Monte Carlo simulations performed in the C programming language, an example of scientific programming for the generation of pseudorandom numbers relevant to both teaching and research in the field of biomedicine is presented. The relatively simple algorithm proposed makes possible the statistical analysis of sequences of random numbers. The following three generators of pseudorandom numbers were used: the rand function contained in the stdlib.h library of the C programming language, Marsaglia's generator, and a chaotic function. The statistical properties of the sequences generated were compared, identical parameter values being adopted for this purpose. The properties of two estimators in finite samples of the pseudorandom numbers were also evaluated and, under suitable conditions, both the maximum-likelihood and method of moments proved to be good estimators. The findings demonstrated that the proposed algorithm appears to be suitable for the analysis of data from random experiments, indicating that it has a large variety of possible applications in the clinical practice.