Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Sci Total Environ ; : 174526, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972402

ABSTRACT

A growing body of scientific literature stresses the need to advance current environmental risk assessment (ERA) methodologies and associated regulatory frameworks to better address the landscape-scale and long-term impact of pesticide use on biodiversity and the ecosystem. Moreover, more collaborative and integrative approaches are needed to meet sustainability goals. The One Health approach is increasingly applied by the European Food Safety Authority (EFSA) to support the transition towards safer, healthier and more sustainable food. To this end, EFSA commissioned the development of a roadmap for action to establish a European Partnership for next-generation, systems-based Environmental Risk Assessment (PERA). Here, we summarise the main conclusions and recommendations reported in the 2022 PERA Roadmap. This roadmap highlights that fragmentation of data, knowledge and expertise across regulatory sectors results in suboptimal processes and hinders the implementation of integrative ERA approaches needed to better protect the environment. To advance ERA, we revisited the underlying assumptions of the current ERA paradigm; that chemical risks are generally assessed and managed in isolation with a substance-by-substance, realistic worst-case and tiered approach. We suggest optimising the use of the vast amount of information and expertise available with pesticides as a pilot area. It is recommended to as soon as possible adopt a systems-based approach, i.e. within the current regulatory framework, to spark a step-wise transition towards an ERA framed at a system level of ecological and societal relevance. Tangible systems-based and integrative steps are available. For instance, the rich sources of existing data for prospective and retrospective ERA of pesticides could be used to reality-benchmark existing and new ERA methods. To achieve these goals, collaboration among stakeholders across scientific disciplines and regulatory sectors must be strengthened.

2.
Insects ; 15(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38921134

ABSTRACT

Implementation of marker-assisted selection (MAS) in modern beekeeping would improve sustainability, especially in breeding programs aiming for resilience against the parasitic mite Varroa destructor. Selecting honey bee colonies for natural resistance traits, such as brood-intrinsic suppression of varroa mite reproduction, reduces the use of chemical acaricides while respecting local adaptation. In 2019, eight genomic variants associated with varroa non-reproduction in drone brood were discovered in a single colony from the Amsterdam Water Dune population in the Netherlands. Recently, a new study tested the applicability of these eight genetic variants for the same phenotype on a population-wide scale in Flanders, Belgium. As the properties of some variants varied between the two studies, one hypothesized that the difference in genetic ancestry of the sampled colonies may underly these contribution shifts. In order to frame this, we determined the allele frequencies of the eight genetic variants in more than 360 Apis mellifera colonies across the European continent and found that variant type allele frequencies of these variants are primarily related to the A. mellifera subspecies or phylogenetic honey bee lineage. Our results confirm that population-specific genetic markers should always be evaluated in a new population prior to using them in MAS programs.

3.
Environ Sci Pollut Res Int ; 31(17): 25424-25436, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38472582

ABSTRACT

Laboratory ecotoxicological tests are important tools for the management of environmental changes derived from anthropogenic activities. Folsomia candida is usually the model species used in some procedures. However, this species may not be sufficiently representative of the sensitivity of the other collembolan species. This study aimed to evaluate (i) the effects of soils naturally rich in potentially toxic elements (PTE) and soil characteristics on the reproduction and survival of different collembolan species, (ii) whether the habitat function of these soils is compromised, and (iii) to what extent F. candida is representative of the other collembolan species. For this, reproduction tests with six collembolan species were conducted in 14 different samples of soils. In general, collembolan reproduction was not completely inhibited in none of the natural tested soils. Even soils with high pollution load index values did not negatively affect collembolan reproduction for most of the species. In contrast, the lowest collembolan reproduction rates were found in a visually dense soil (lowest volume/weight ratio), highlighting that soil attributes other than total PTE concentration also interfere in the reproduction of collembolans. Our results support the idea that the F. candida species might not be representative of other collembolan species and that laboratory tests to assess soil contaminations should be conducted using diverse collembolan species.


Subject(s)
Arthropods , Soil Pollutants , Animals , Soil , Soil Pollutants/analysis , Environmental Pollution , Reproduction
4.
Sci Rep ; 14(1): 3827, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38360892

ABSTRACT

In this work we aim to provide a quantitative method allowing the probing of the physiological status of honeybee colonies by providing them with a gentle, short, external artificial vibrational shockwave, and recording their response. The knock is provided by an external electromagnetic shaker attached to the outer wall of a hive, driven by a computer with a 0.1 s long, monochromatic vibration at 340Hz set to an amplitude that occasionally yields a mild response from the bees, recorded by an accelerometer placed in the middle of the central frame of the colony. To avoid habituation, the stimulus is supplied at randomised times, approximately every hour. The method is pioneered with a pilot study on a single colony hosted indoors, then extended onto eight outdoors colonies. The results show that we can quantitatively sense the colony's overall mobility, independently from another physiological aspect, which is phenomenologically explored. Using this, a colony that is queenless is easily discriminated from the others.


Subject(s)
Vibration , Bees , Animals , Pilot Projects
5.
Insects ; 15(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276825

ABSTRACT

Honey bee colonies have great societal and economic importance. The main challenge that beekeepers face is keeping bee colonies healthy under ever-changing environmental conditions. In the past two decades, beekeepers that manage colonies of Western honey bees (Apis mellifera) have become increasingly concerned by the presence of parasites and pathogens affecting the bees, the reduction in pollen and nectar availability, and the colonies' exposure to pesticides, among others. Hence, beekeepers need to know the health condition of their colonies and how to keep them alive and thriving, which creates a need for a new holistic data collection method to harmonize the flow of information from various sources that can be linked at the colony level for different health determinants, such as bee colony, environmental, socioeconomic, and genetic statuses. For this purpose, we have developed and implemented the B-GOOD (Giving Beekeeping Guidance by computational-assisted Decision Making) project as a case study to categorize the colony's health condition and find a Health Status Index (HSI). Using a 3-tier setup guided by work plans and standardized protocols, we have collected data from inside the colonies (amount of brood, disease load, honey harvest, etc.) and from their environment (floral resource availability). Most of the project's data was automatically collected by the BEEP Base Sensor System. This continuous stream of data served as the basis to determine and validate an algorithm to calculate the HSI using machine learning. In this article, we share our insights on this holistic methodology and also highlight the importance of using a standardized data language to increase the compatibility between different current and future studies. We argue that the combined management of big data will be an essential building block in the development of targeted guidance for beekeepers and for the future of sustainable beekeeping.

6.
Aquat Toxicol ; 264: 106726, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37806024

ABSTRACT

Basamid® is a fumigant nematicide and fungicide known to break down in several volatile compounds, mainly methyl isothiocyanate (MITC), when in contact with water. Soil abiotic parameters, such as pH, influences this breakdown process, and thus, the toxic effects of Basamid® to aquatic biota. This work studied the influence of soil pH (5.5, 6.5 and 7.5) on the toxicity of eluates (1:4, m:v), obtained from Basamid®-contaminated soils (with the recommended dose of 145 mg of dazomet/Kg of soil), on two primary consumers: Daphnia magna and Brachionus calyciflorus. For this, lethal and sublethal toxicity of eluates originated from soils at pH 5.5, 6.5 and 7.5, contaminated with Basamid® (Ba-E 5.5; 6.5 and 7.5, respectively), were assessed (dilutions between 0.096 - 100%). The LD50,24h of Basamid® eluates for D. magna varied from 3.07% to 7.82% (Ba-E 6.5 and Ba-E 5.5 respectively), while for B. calyciflorus varied from 18.1% to 84.7% (Ba-E 6.5 and Ba-E 7.5, respectively). Both species were less sensitive to Basamid® eluates originated from soils with pH 7.5 and more sensitive to those obtained from soils with pH 6.5. Regarding the sublethal effects, a lower soil pH was associated with a higher toxicity of Basamid® to D. magna reproduction (LOED: 0.125% Ba-E 5.5), while for B. calyciflorus such a higher toxicity was observed at the highest soil pH (ED20: 7.42% [5.10-9.74] at Ba-E 7.5). These results show a negative association between soil pH and the lethal toxicity of Basamid® contaminated eluates. However, such a pattern was not observed at sublethal level, at which a species dependency was observed regarding the influence of soil pH in the observed toxicity. Nevertheless, it is to highlight that very low concentrations of eluates (as 3.07%) caused significant mortality, indicating a high risk for freshwater biota. Considering that Basamid® is likely to reach the aquatic systems is real, for which reason the recommended dose must be reviewed at environmentally-relevant scenarios.


Subject(s)
Pesticides , Rotifera , Water Pollutants, Chemical , Animals , Soil/chemistry , Water Pollutants, Chemical/toxicity , Pesticides/pharmacology , Hydrogen-Ion Concentration , Daphnia
7.
Glob Ecol Conserv ; 45: e02525, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37265595

ABSTRACT

The COVID-19 pandemic has drastically affected people's social habits, especially those related to outdoor activities. We intended to understand the effects of the two national lockdowns in Portugal on the presence and activity of a wild population of red deer (Cervus elaphus) by analysing data from camera traps installed at Lousã mountain, in the central part of Portugal. The cameras were set between 2019 and 2021, and a total of 2434 individual contacts of red deer and 182 contacts of people were recorded. Results showed a higher human presence in the mountain area during the COVID-19 outbreak, especially during the first lockdown in 2020 (0.05 ± 0.17 individuals/day), compared to the same period of the year before the pandemic (0.02 ± 0.05 individuals/day), which resulted in an increase of people by 150%. The increase in human presence did not have a significant direct effect on the presence of red deer. Despite the low overlap of activity patterns between people and red deer, deer showed avoidance behaviour in the 24 h after the detection of human presence on camera traps, as well as an increase in daily activity during the 2020 lockdown, showing red deer's awareness of human visitation. These results showed that people's increased search for cultural services in wild environments during COVID-19 lockdowns, such as hiking and biking, seemed to influence the population of red deer, albeit momentarily.

9.
Plants (Basel) ; 12(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37050097

ABSTRACT

Enhanced drought, more frequent rainfall events and increased inter-annual variability of precipitation are the main trends of climate expected for the Mediterranean. Drought is one of the most important stressors for plants and significantly impacts plant communities causing changes in plant composition and species dominance. Through an experiment under controlled conditions, we assessed the response of Mediterranean species from different functional groups (annual grass, annual forb, annual legume, and perennial shrub) to moderate and severe water deficit. Changes in plant traits (leaf dry matter), biomass and physiology (water status, photosynthesis, pigments, and carbohydrate) were evaluated. The studied species differed in their response to water deficit. Ornithopus compressus, the legume, showed the strongest response, particularly under severe conditions, decreasing leaf relative water content (RWC), pigments and carbohydrates. The grass, Agrostis pourreti and the forb, Tolpis barbata, maintained RWC, indicating a higher ability to cope with water deficit. Finally, the shrub, Cistus salviifolius, had the lowest response to stress, showing a higher ability to cope with water deficit. Despite different responses, plant biomass was negatively affected by severe water deficit in all species. These data provide background for predicting plant diversity and species composition of Mediterranean grasslands and Montado under climate change conditions.

10.
Biology (Basel) ; 12(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37106741

ABSTRACT

Sexual segregation is a common phenomenon among animals, particularly dimorphic ones. Although widely addressed, the reasons and consequences of sexual segregation are still an important topic in need of better understanding. In this study, we mainly evaluate the diet composition and feeding behaviour of animals, which are related to the use of different habitats by the sexes, a special case of sexual segregation also termed habitat segregation. Sexually size dimorphic males and females often have different energetic and nutritional needs and, thus, different diets. We collected fresh faecal samples from wild Iberian red deer (Cervus elaphus L.) in Portugal. Samples were analysed in terms of diet composition and quality. As expected, both sexes differed in their diet composition, with males eating more arboreous species than females, but this difference was affected by sampling periods. Diet composition of both sexes had the biggest differences (and the lowest overlap) in spring, which corresponds to the end of gestation and beginning of birth. These differences might be a consequence of the sexual body size dimorphism characteristic of this species, as well as of different needs due to different reproductive costs. No differences regarding the quality of the excreted diet were observed. Our results may help to understand some patterns of sexual segregation observed in this red deer population. However, besides foraging ecology, other factors may also be contributing to sexual segregation in this Mediterranean population of red deer, and further studies focusing on sexual differences regarding feeding behaviour and digestibility are needed.

11.
Sci Total Environ ; 868: 161640, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36669666

ABSTRACT

Agrochemicals are mostly used to deplete pests and treat diseases in terrestrial agro-ecosystems. However, their transport through the soil, by leaching and/or runoff, may cause them to reach aquatic systems. Environmental parameters, such as soil pH, can affect this transport, by influencing the magnitude of agrochemicals degradation and chemical reaction. This work aimed at investigating the influence of soil pH on the toxicity of eluates obtained from Basamid® contaminated soils to Hydra viridissima, Xenopus laevis and Danio rerio. For this, a natural soil with pH amended to 5.5, 6.5 and 7.5, was spiked with the recommended dose (RD) of Basamid® (145 mg dazomet/kg soil) and eluates (Ba-E) were prepared with the respective species culture medium. Dilutions of the eluates (0.14-100%), obtained from the three soils (Ba-E 5.5, Ba-E 6.5 and Ba-E 7.5, corresponding to soil spiked with Basamid® RD at soil pH of 5.5, 6.5 and 7.5, respectively), were used to expose the organisms. Results showed that for H. viridissima increased soil alkalinity provoked less mortality comparatively to lower soil pH [LD50,96h of Ba-E 5.5: 10.6% and LD50,96h of Ba-E 7.5: 21.2%]. As for X. laevis and D. rerio Ba-E lethal ecotoxicity was similar across soil pH (LD50,96h varied from 5.7 to 6.9% and from 2.1 to 4.3%, respectively). For malformations, 20% effect dilution (ED) in H. viridissima was significantly higher at Ba-E 7.5 (ED20,96h: 17.4%), comparatively to Ba-E 5.5 and Ba-E 6.5 (ED20,96h: 7.9% and 7.7%, respectively). From the three tested organisms and based on both lethal and sublethal effects, H. viridissima presented the highest tolerance to Basamid® eluates and soil pH was a major factor determining the fumigant toxicity, with higher soil pH levels inducing, lower toxicity. The eluates obtained from soils contaminated with RD of Basamid® induced severe effects to the three aquatic species.


Subject(s)
Hydra , Pesticides , Soil Pollutants , Animals , Zebrafish/metabolism , Xenopus laevis , Ecosystem , Soil/chemistry , Soil Pollutants/metabolism , Hydrogen-Ion Concentration
12.
Sci Total Environ ; 859(Pt 1): 160165, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36379344

ABSTRACT

Intensive agriculture along with the use of agrochemicals has been associated with low soil fertility, soil erosion, and soil acidity. Management of soil pH through liming is a common practice in agriculture to increase soil fertility and nutrient availability. When altering soil pH, different chemical reactions occur depending on soil composition and agrochemicals presence. Basamid® is a fumigant used worldwide targeting soil nematodes, fungi, and weeds in diverse crops, that can reach freshwater ecosystems by leaching through the soil layers. The major goal of this work was to assess the influence of soil pH in the toxicity of Basamid® eluates to the microalgae Raphidocelis subcapitata and the duckweed Lemna minor. For this, eluates were prepared from soils with different pH (5.5, 6.5 and 7.5), contaminated with the recommended dose of Basamid® corresponding to 145.7 mg of dazomet/Kg soil. Soil was amended with calcium carbonate (CaCO3). Raphidocelis subcapitata and L. minor were exposed to the eluates during 72 h and 7 days respectively, and multiple endpoints were assessed: growth rate, biomass, pigment as chlorophyl content and cell damage. Results showed that soil pH can influence the performance of the tested species and also be a major factor in influencing Basamid®'s toxicity. However, a clear pattern of the influence of soil pH on Basamid®'s toxicity was not observed and was species dependent. For R. subcapitata lower soil pHs induced higher toxicity of Basamid®'s to the algae [ED50 for growth rate: 30 % (confidence limits-CL: 22.8-37.2) for soil pH 5.5; >100 % for soil pH 6.5 and pH 7.5], while for L. minor the opposite was observed [ED50 for number of fronds: 27.2 % (CL: 22.8-31.6) for pH 5.5; 20.3 % (CL: 10.0-30.6) for pH 6.5 and 10.7 % (CL: 6.3-15.1)]. Overall, these results showed that leachates of Basamid® through soils, at recommended doses, can have a severe impact on aquatic systems, with or without the influence of abiotic factors.


Subject(s)
Araceae , Microalgae , Soil/chemistry , Ecosystem , Fresh Water/chemistry
13.
Antonie Van Leeuwenhoek ; 115(9): 1129-1150, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35852752

ABSTRACT

Understanding the effects of forest-to-agriculture conversion on microbial diversity has been a major goal in soil ecological studies. However, linking community assembly to the ruling ecological processes at local and regional scales remains challenging. Here, we evaluated bacterial community assembly patterns and the ecological processes governing niche specialization in a gradient of geography, seasonality, and land-use change, totaling 324 soil samples, 43 habitat characteristics (abiotic factors), and 16 metabolic and co-occurrence patterns (biotic factors), in the Brazilian Atlantic Rainforest, a subtropical biome recognized as one the world's largest and most threatened hotspots of biodiversity. Pairwise beta diversities were lower in pastures than in forest and no-till soils. Pasture communities showed a predominantly neutral model, regarding stochastic processes, with moderate dispersion, leading to biotic homogenization. Most no-till and forest microbial communities followed a niche-based model, with low rates of dispersal and weak homogenizing selection, indicating niche specialization or variable selection. Historical and evolutionary contingencies, as represented by soil type, season, and dispersal limitation were the main drivers of microbial assembly and processes at the local scale, markedly correlated with the occurrence of endemic microbes. Our results indicate that the patterns of assembly and their governing processes are dependent on the niche occupancy of the taxa evaluated (generalists or specialists). They are also more correlated with historical and evolutionary contingencies and the interactions among taxa (i.e., co-occurrence patterns) than the land-use change itself.


Subject(s)
Microbiota , Soil Microbiology , Biodiversity , Forests , Soil
14.
Sci Total Environ ; 844: 157030, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35777572

ABSTRACT

Eucalyptus plantations occupy 26 % of Portuguese forested areas. Its flowers constitute important sources for bees and beekeepers take advantage of this and keep their honey bee colonies within or near the plantations for honey production. Nonetheless, these plantations are susceptible to pests, such as the eucalyptus weevil Gonipterus platensis. To control this weevil, some plantations must be treated with pesticides, which might harm non-target organisms. This study aimed to perform a multifactorial assessment of the health status and development of Apis mellifera iberiensis colonies in two similar landscape windows dominated by Eucalyptus globulus plantations - one used as control and the other with insecticide treatment. In each of the two selected areas, an apiary with five hives was installed and monitored before and after a single application of the insecticide acetamiprid (40 g a.i./ha). Colony health and development, resources use, and pesticide residues accumulation were measured. The results showed that the application of acetamiprid in this area did not alter the health status and development of the colonies. This can be explained by the low levels of residues of acetamiprid detected only in pollen and bee bread samples, ~52 fold lower than the sublethal effect threshold. This could be attributed to the low offer of resources during and after the application event and within the application area, with the consequent foraging outside the sprayed area during that period. Since exposure to pesticides in such complex landscapes seems to be dependent on the spatial and temporal distribution of resources, we highlight some key monitoring parameters and tools that are able to provide reliable information on colony development and use of resources. These tools can be easily applied and can provide a better decision-taking of pesticide application in intensive production systems to decrease the risk of exposure for honey bees.


Subject(s)
Eucalyptus , Insecticides , Pesticides , Animals , Bees , Insecticides/toxicity , Neonicotinoids/toxicity
15.
Sci Total Environ ; 840: 156485, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35688249

ABSTRACT

Honey bee colonies have shown abnormal mortality rates over the last decades. Colonies are exposed to biotic and abiotic stressors including landscape changes caused by human pressure. Modern agriculture and even forestry, rely on pesticide inputs and these chemicals have been indicated as one of the major causes for colony losses. Neonicotinoids are a common class of pesticides used worldwide that are specific to kill insect pests, with acetamiprid being the only neonicotinoid allowed to be applied outdoors in the EU. To evaluate honeybees' exposure to acetamiprid under field conditions as well as to test the use of in-situ tools to monitor pesticide residues, two honeybee colonies were installed in five Eucalyptus sp. plantations having different area where Epik® (active substance: acetamiprid) was applied as in a common spraying event to control the eucalyptus weevil pest. Flowers, fresh nectar, honey bees and colony products samples were collected and analyzed for the presence of acetamiprid residues. Our main findings were that (1) acetamiprid residues were found in samples collected outside the spraying area, (2) the amount of residues transported into the colonies increased with the size of the sprayed area, (3) according to the calculated Exposure to Toxicity Ratio (ETR) values, spraying up to 22 % of honeybees foraging area does not harm the colonies, (4) colony products can be used as a valid tool to monitor colony accumulation of acetamiprid and (5) the use of Lateral Flow Devices (LFDs) can be a cheap, fast and easy tool to apply in the field, to evaluate the presence of acetamiprid residues in the landscape and colony products.


Subject(s)
Eucalyptus , Insecticides , Pesticides , Animals , Bees , Insecticides/toxicity , Neonicotinoids/toxicity , Risk Assessment
16.
Sci Total Environ ; 837: 155712, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35525360

ABSTRACT

Climate change may interfere with the behavior of pesticides and organisms, influencing pesticides toxicity to non-target organisms like collembolans. Aiming to assess the representativeness of the standardized species F. candida to the Collembola group under different temperatures, four species of collembolans - Folsomia candida, Folsomia fimetaria, Proisotoma minuta and Sinella curviseta - were exposed to a new generation insecticide of Chlorantraniliprole, under the standardized temperature of 20 °C, and a temperature foreseeing a global warming scenario of 25 °C. Results showed that F. candida, F. fimetaria and P. minuta were sensitive to Chlorantraniliprole at both temperatures, while S. curviseta was insensitive to the insecticide concentrations up to 457 mg a.i./kg of soil, regardless of the temperature. The sensitivity of F. candida and P. minuta was significantly higher at 25 °C than at 20 °C, while F. fimetaria and S. curviseta remained equally sensitive/insensitive to both temperatures. Results suggest that F. candida can be representative of F. fimetaria under standard conditions but not for F. fimetaria under 25 °C nor for P. minuta and S. curviseta under both temperatures due to the higher sensitivity of F. candida. On the other hand, due to its higher sensitivity, F. candida can be used to define environmentally protective measures (at both test temperatures) but the use of additional Collembola species is recommended to avoid the definition of over-protective goals.


Subject(s)
Arthropods , Insecticides , Pesticides , Soil Pollutants , Animals , Insecticides/toxicity , Reproduction , Temperature
17.
Environ Sci Pollut Res Int ; 29(44): 66705-66715, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35504996

ABSTRACT

This study aimed to evaluate the effects of untreated pig manure from diets incorporating growth-promoting supplements (antibiotics and Zn oxide) on the survival and reproduction of Eisenia andrei earthworms. The tested manures were obtained from four different groups of pigs fed with four different diets: CS, a diet based on corn and soymeal; TR, a diet based on corn, soymeal, and ground wheat (15%); CSa, a diet based on corn and soymeal + 100 ppm of doxycycline + 50 ppm of colistin + 2500 ppm of Zn oxide; and TRa, a diet based on corn, soymeal, and ground wheat (15%) + 100 ppm of doxycycline + 50 ppm of colistin + 2500 ppm of Zn oxide. The study used two soils representative of the Southern region of Brazil (Oxisol and Entisol). In general, there were no significant differences between the different manures tested in each soil. However, there were differences in the toxicity manure on E. andrei between the soils, and the magnitude of this effect was dependent on the applied dose. In Oxisol, LC50 values were higher than 80 m3 ha-1, and EC50 varied from 9 to 27 m3 ha-1. In Entisol, the LC50 values were below the lowest dose tested (< 25 m3 ha-1), and EC50 remained around 5 m3 ha-1. It may be possible that the effects observed were attributed to an excess of nitrogen, copper, and zinc, promoted by the addition of the untreated manure and how these factors interacted with soil type.


Subject(s)
Oligochaeta , Soil Pollutants , Animals , Anti-Bacterial Agents/pharmacology , Colistin , Copper/pharmacology , Diet , Doxycycline/pharmacology , Manure , Nitrogen/pharmacology , Oxides/pharmacology , Soil , Soil Pollutants/analysis , Swine , Zinc/pharmacology
18.
Sci Total Environ ; 837: 155710, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35526620

ABSTRACT

Agricultural intensification has increased the number of stressors that pollinators are exposed to. Besides increasing landscape fragmentation that limit the supply of flower resources, intensive agricultural practices relying on the use of pesticides to control agricultural pests also affect non-target organisms like honey bees. The use of most pesticides containing neonicotinoids has been severely restricted in the European Union, leaving pesticides containing acetamiprid as the only ones that are still authorized. In the meantime, new substances like sulfoxaflor, that have a similar mode of action acting on the insect's nicotinic acetylcholine receptors (nAChR), have been approved for agricultural use. In Europe and USA, the use of pesticides containing this active ingredient is limited due to toxic effects already reported on bees, but no restrictions regarding this matter were applied in other countries (e.g., Brazil). In this study, homing ability tests with acetamiprid and sulfoxaflor were performed, in which honey bees were fed with three sub-lethal doses from each substance. After exposure, each honey bee was equipped with an RFID chip and released 1 km away from the colony to evaluate their homing ability. No significant effects were detected in honey bees fed with 32, 48 and 61 ng of acetamiprid while a poor performance on their homing ability, with only 28% of them reaching the colony instead of 75%, was detected at a 26 ng/a.s./bee dose of sulfoxaflor. Although, both pesticides act on the nAChR, the higher sulfoxaflor toxicity might be related with the honey bees detoxifying mechanisms, which are more effective on cyano-based neonicotinoids (i.e., acetamiprid) than sulfoximines. With this study we encourage the use of homing ability tests to be a suitable candidate to integrate the future risk assessment scheme, providing valuable data to models predicting effects on colony health that emerge from the individual actions of each bee.


Subject(s)
Insecticides , Pesticides , Receptors, Nicotinic , Animals , Bees , Insecticides/toxicity , Neonicotinoids/toxicity , Pesticides/toxicity , Pyridines , Sulfur Compounds/toxicity
19.
Sci Total Environ ; 828: 154269, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35276171

ABSTRACT

Biobased and biodegradable plastic mulch films (aka, mulch biofilm) have emerged as a sustainable alternative to conventional plastic mulch films in agriculture, promising to reduce soil contamination with plastic residues through in situ biodegradation. However, current standards certifying biodegradable plastics cannot predict biodegradability in natural settings. The scarce studies considering the possible biodegradation and ecotoxicity of mulch biofilms in soil systems question the environmental friendliness of these alternative options. This study assessed the biodegradation of a commercially available mulch biofilm by the soil-dwelling fungus Penicillium brevicompactum (in solid culture media and soil for 15 and 28 days, respectively), and the ecotoxicological effects of mulch biofilm microplastics on the earthworm Eisenia andrei (pristine or UV-weathered, at 0.125-0.250-0.500 g/kg). Results (from microplastics' mass loss, microscopy, and FTIR spectroscopy) suggest that the presence of P. brevicompactum promotes mulch biofilm's biodegradation. Exposure to environmental concentrations of pristine biofilm microplastics (and its ingestion) increased earthworms' sensitivity to touch, induced physiological alterations, decreased energy reserves, and decreased their reproduction (>30%). Conversely, exposure to weathered biofilm microplastics slightly increased earthworms' sensitivity, as well as carbohydrate reserves,without affecting their reproduction. The tested mulch biofilm seems to be, at first sight, an environmentally friendly alternative as it presented susceptibility for biodegradation by a widespread fungus, and the absence of ecotoxicological chronic effects on a key macroinvertebrate species in soil ecosystems when considering environmental relevant concentrations and plastics weathered conditions. Notwithstanding, the obtained results highlight the need to revise current standards, as they often neglect the role of, and their chronic effects on, naturally occurring organisms.


Subject(s)
Biodegradable Plastics , Oligochaeta , Soil Pollutants , Agriculture , Animals , Biofilms , Ecosystem , Fungi , Microplastics , Plastics , Soil , Soil Pollutants/toxicity
20.
Toxics ; 10(3)2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35324752

ABSTRACT

In this study the recolonization concentration concept for soil organisms is presented and validated. This concept is based on the empirically deduced avoidance-recolonization hypothesis, which shows a negative correlation between avoidance (ACx) and recolonization (RCx) (ACx = RC100-x) responses. The concept was validated in a two-step approach composed by (i) individual placement tests, to demonstrate the non-influence of individual placement in a dual chamber avoidance test and (ii) small scale gradient tests to demonstrate that the number of colonizers reaching a soil patch with a certain concentration is independent on their previous exposure to lower concentrations. Overall, data show that avoidance data can be used, when framed under the recolonization concentration concept, to evaluate the recolonization potential of contaminated sites. The recolonization concept is an important theoretical concept that when coupled with spatial modelling tools could be used to tackle the spatial and temporal recovery dynamics of contaminated soil.

SELECTION OF CITATIONS
SEARCH DETAIL
...