Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 5802, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36192390

ABSTRACT

Small interfering RNAs are a new class of drugs, exhibiting sequence-driven, potent, and sustained silencing of gene expression in vivo. We recently demonstrated that siRNA chemical architectures can be optimized to provide efficient delivery to the CNS, enabling development of CNS-targeted therapeutics. Many genetically-defined neurodegenerative disorders are dominant, favoring selective silencing of the mutant allele. In some cases, successfully targeting the mutant allele requires targeting single nucleotide polymorphism (SNP) heterozygosities. Here, we use Huntington's disease (HD) as a model. The optimized compound exhibits selective silencing of mutant huntingtin protein in patient-derived cells and throughout the HD mouse brain, demonstrating SNP-based allele-specific RNAi silencing of gene expression in vivo in the CNS. Targeting a disease-causing allele using RNAi-based therapies could be helpful in a range of dominant CNS disorders where maintaining wild-type expression is essential.


Subject(s)
Huntington Disease , Alleles , Animals , Chemical Engineering , Gene Silencing , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Huntington Disease/metabolism , Huntington Disease/therapy , Mice , Nerve Tissue Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...