Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37688248

ABSTRACT

This work aimed to study the effect of the incorporation of graphene nanoplatelets (GRA 0.5% and 1% (w/w)) on the matrices of biobased polymers composed of starch-based materials (B20) and poly(butylene succinate) (PBS) using pine rosin (RES) as a compatibilizer. Three formulations were produced (B20/RES/PBS, B20/RES/PBS/GRA0.5%, and B20/RES/PBS/GRA1%), and their mechanical properties (tensile, flexural, hardness, and impact), rheological behavior, thermal properties (thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)), chemical analysis (Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy), and contact angle were evaluated. Hardness (Shore D), tensile, and flexural moduli increased, whereas elongation at break and toughness decreased as GRA content increased. FTIR studies strongly supported the existence of interactions between polymeric matrices and the large surface area of GRA. The viscosity flow curves were well fitted to the Cross-Williams-Landel-Ferry (Cross-WLF) model, and the three formulations exhibited non-Newtonian (shear-thinning) behavior. The analysis of water contact angles indicated that the formulation surfaces have hydrophilic behavior. All the samples are thermally stable, and the results of this study can be used to optimize the application of biobased graphene-based composites for applications in injection molding industries.

2.
Polymers (Basel) ; 15(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37050248

ABSTRACT

This work aims to evaluate the influence of two starch-based materials (B16 and B20) on the moisture sorption isotherms, determined at 30, 40, and 50 °C, where B16 contains 5% (w/w) more starch than B20. Thermodynamic functions (differential enthalpy (∆Hdif), differential entropy (∆Sdif), integral enthalpy (Δhint), integral entropy (ΔSint), free Gibbs energy (∆G), and spreading pressure (φ)) were used to understand the water-binding behaviors and the energy requirements to remove the moisture content from the surface of these materials. The moisture sorption isotherms exhibited type III behavior, and the Guggenheim-Anderson-de Boer (GAB) model was the most suitable to fit the experimental moisture adsorption data. The adsorption isotherms of microparticles were enthalpy-controlled, with isokinetic temperature values of 221.45 and 279.77 K for B16 and B20, respectively, being higher than the harmonic mean temperature (312.94 K). The values of ∆G were positive (45.274 and 44.307 kJmol-1 for B16 and B20, respectively), indicating a non-spontaneous process. The spreading pressure values increased with increasing water activity (aw) for all isotherms. Higher values of ∆Hdif and ∆Sdif obtained from B16 confirmed its higher number of sorption sites available for binding with water molecules when compared to B20, making it less suitable for application in the food packaging industry.

3.
Biofabrication ; 12(3): 035017, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32316003

ABSTRACT

Embedded bio-printing has fostered significant advances toward the fabrication of soft complex tissue-like constructs, by providing a physical support that allows the freeform shape maintenance within the prescribed spatial arrangement, even under gravity force. Current supporting materials still present major drawbacks for up-scaling embedded 3D bio-printing technology towards tissue-like constructs with clinically relevant dimensions. Herein, we report a a cost-effective and widely available supporting material for embedded bio-printing consisting on a continuous pseudo-plastic matrix of xanthan-gum (XG). This natural polisaccharide exhibits peculiar rheological properties that have enabled the rapid generation of complex volumetric 3D constructs with out-of-plane features. The freedom of design within the three orthogonal axes through the independent and controlled bio-printing process opens new opportunities to produce on demand large arbitrary shapes for personalized medicine. Additionally, we have demonstrated the versatile functionality of XG as a photocurable gel reservoir to engineer perfused cell-laden hydrogel constructs, addressing other practical biomedical applications such as in vitro models and organ-on-chip platforms.


Subject(s)
Elasticity , Extracellular Matrix/chemistry , Printing, Three-Dimensional , Animals , Bioprinting , Cell Line , Mice , Perfusion , Polysaccharides, Bacterial/chemistry , Rheology , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...