Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 128: 110247, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32450524

ABSTRACT

Structural diversity characterizes natural products as prototypes for design of lead compounds. The aim of this study was to synthetize, and to evaluate the toxicity and antitumor action of a new piperine analogue, the butyl 4-(4-nitrobenzoate)-piperinoate (DE-07). Toxicity was evaluated against zebrafish, and in mice (acute and micronucleus assays). To evaluate the DE-07 antitumor activity Ehrlich ascites carcinoma model was used in mice. Angiogenesis, Reactive Oxygen Species (ROS) production and cytokines levels were investigated. Ninety-six hours exposure to DE-07 did not cause morphological or developmental changes in zebrafish embryos and larvae, with estimated LC50 (lethal concentration 50%) higher than 100 µg/mL. On the acute toxicity assay in mice, LD50 (lethal dose 50%) was estimated at around 1000 mg/kg, intraperitoneally (i.p.). DE-07 (300 mg/kg, i.p.) did not induce increase in the number of micronucleated erythrocytes in mice, suggesting no genotoxicity. On Ehrlich tumor model, DE-07 (12.5, 25 or 50 mg/kg, i.p.) induced a significant decrease on cell viability. In addition, there was an increase on ROS production and a decrease in peritumoral microvessels density. Moreover, DE-07 induced an increase of cytokines levels involved in oxidative stress and antiangiogenic effect (IL-1ß, TNF-α and IL-4). No significant clinical toxicological effects were recorded in Ehrlich tumor transplanted animals. These data provide evidence that DE-07 presents low toxicity, and antitumor effect via oxidative and antiangiogenic actions by inducing modulation of inflammatory response in the tumor microenvironment.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Anti-Inflammatory Agents/pharmacology , Carcinoma, Ehrlich Tumor/drug therapy , Neovascularization, Pathologic , Oxidants/pharmacology , Oxidative Stress , Piperidines/pharmacology , Tumor Microenvironment , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/toxicity , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/toxicity , Carcinoma, Ehrlich Tumor/immunology , Carcinoma, Ehrlich Tumor/metabolism , Carcinoma, Ehrlich Tumor/pathology , Cytokines/metabolism , Male , Mice , Oxidants/chemical synthesis , Oxidants/toxicity , Piperidines/chemical synthesis , Piperidines/toxicity , Reactive Oxygen Species/metabolism , Zebrafish/embryology
2.
Biomed Pharmacother ; 90: 253-261, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28364597

ABSTRACT

BACKGROUND: Acridine derivatives, including amsacrine, have antitumor activity. However, side effects, development of resistance and their low bioavailability, have limited their use. Herein, we described the synthesis, and evaluated the toxicity and antitumor activity of a new amsacrine analogous, the N'-(2-chloro-6-methoxy-acridin-9-yl)-2-cyano-3-(4-dimethylaminophenyl)-acrilohidrazida (ACS-AZ10). METHODS: The compound was obtained in a linear pathway where the ASC-Az intermediate was obtained by coupling of 6,9-dichloro-3-methoxy-acridine and 2-ciany-acethohidrazide followed by condensation with the corresponding aldehyde. The toxicity of ACS-AZ10 was evaluated in mice using acute toxicity and micronucleus assays. Ehrlich ascites carcinoma model was used to investigate the antitumor activity and toxicity of ACS-AZ10 (7.5, 15 or 30mg/kg, i.p.), after nine days of treatment. Cell cycle and angiogenesis were also evaluated. RESULTS: The ASC-AZ10 was obtained with satisfactory yields and its structure was confirmed by spectroscopic and spectrometric techniques. On acute toxicity study, ACS-AZ10 (2000mg/kg, i.p.) induced transient depressant effects on central nervous system. The LD50 was approximately 2500mg/kg. ACS-AZ10 (15 or 30mg/kg) displayed significant antitumor activity considering the tumor weight and volume, cell viability, and total Ehrlich cell count. ACS-AZ10 (7.5mg/kg) induced an increase in sub-G1 peak, suggesting apoptosis. At 15mg/kg ACS-AZ10 induced cell cycle arrest in G2/M phase and a reduction in the percentage of cells in G0/G1 and S phases, suggesting a pre-mitotic blockade. ACS-AZ10 reduced the microvessel density, indicating an antiangiogenic effect. Weak hematological, biochemical and histopathological toxicity were observed. The compound doesn't show genotoxicity in micronucleus assay. CONCLUSIONS: ACS-AZ10 has potent antitumor activity in vivo along with low toxicity.


Subject(s)
Acridines/pharmacology , Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Ascites/drug therapy , Carcinoma, Ehrlich Tumor/drug therapy , Cell Cycle Checkpoints/drug effects , Animals , Apoptosis/drug effects , Ascites/metabolism , Carcinoma, Ehrlich Tumor/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female
3.
Pharm Biol ; 54(12): 3093-3102, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27558915

ABSTRACT

CONTEXT: The genus Xylopia L. (Annonaceae) includes aromatic plants that have both nutritional and medicinal uses. Essential oils of Xylopia species have antitumour effects. However, the efficacy of the essential oil from the fruit of Xylopia langsdorffiana St. Hil & Tul. (EOX) has not been examined. OBJECTIVE: EOX was evaluated to determine its chemical composition, antitumour activity and toxicity. MATERIALS AND METHODS: EOX was obtained from fresh fruits of X. langsdorffiana subjected to hydrodistillation, and gas chromatography-mass spectrometry was used to characterize the chemical composition of EOX. The toxicity of EOX was evaluated using haemolysis, acute toxicity and micronucleus assays. The in vitro antitumour activity of EOX was investigated using the sulforhodamine B assay. The sarcoma 180 murine tumour model was used to evaluate the in vivo antitumour activity and toxicity of EOX (50 and 100 mg/kg) after 7 d of treatment. RESULTS: The major components of EOX were α-pinene (34.57%) and limonene (31.75%). The HC50 (concentration producing 50% haemolysis) was 293.6 µg/ml. EOX showed greater selectivity for the leukaemia cell line K562, with total growth inhibition (TGI) (concentration producing TGI) of 1.8 µg/ml, and for multidrug-resistant ovarian tumour cell line NCI/ADR-RES (TGI of 45.4 µg/ml). The LD50 was approximately 351.09 mg/kg. At doses of 50 and 100 mg/kg, EOX inhibited the in vivo growth of sarcoma 180 by 38.67 and 54.32%, respectively. EOX displayed minor hepatic alterations characteristic of acute hepatitis and induced no genotoxicity. CONCLUSION: EOX showed in vitro and in vivo antitumour activity and low toxicity, which warrants further pharmacological studies.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , DNA Damage/drug effects , Fruit , Oils, Volatile/pharmacology , Xylopia , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Proliferation/drug effects , Cell Proliferation/physiology , DNA Damage/physiology , Dose-Response Relationship, Drug , Female , HT29 Cells , Humans , K562 Cells , MCF-7 Cells , Male , Mice , Oils, Volatile/isolation & purification , Xenograft Model Antitumor Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...