Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Diagnostics (Basel) ; 14(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38786273

ABSTRACT

Artificial intelligence (AI) models have received considerable attention in recent years for their ability to identify optical coherence tomography (OCT) biomarkers with clinical diagnostic potential and predict disease progression. This study aims to externally validate a deep learning (DL) algorithm by comparing its segmentation of retinal layers and fluid with a gold-standard method for manually adjusting the automatic segmentation of the Heidelberg Spectralis HRA + OCT software Version 6.16.8.0. A total of sixty OCT images of healthy subjects and patients with intermediate and exudative age-related macular degeneration (AMD) were included. A quantitative analysis of the retinal thickness and fluid area was performed, and the discrepancy between these methods was investigated. The results showed a moderate-to-strong correlation between the metrics extracted by both software types, in all the groups, and an overall near-perfect area overlap was observed, except for in the inner segment ellipsoid (ISE) layer. The DL system detected a significant difference in the outer retinal thickness across disease stages and accurately identified fluid in exudative cases. In more diseased eyes, there was significantly more disagreement between these methods. This DL system appears to be a reliable method for accessing important OCT biomarkers in AMD. However, further accuracy testing should be conducted to confirm its validity in real-world settings to ultimately aid ophthalmologists in OCT imaging management and guide timely treatment approaches.

2.
Healthcare (Basel) ; 11(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37239647

ABSTRACT

Pressure injuries (PIs) are a major public health problem and can be used as quality-of-care indicators. An incipient development in the field of medical devices takes the form of Smart Health Textiles, which can possess innovative properties such as thermoregulation, sensing, and antibacterial control. This protocol aims to describe the process for the development of a new type of smart clothing for individuals with reduced mobility and/or who are bedridden in order to prevent PIs. This paper's main purpose is to present the eight phases of the project, each consisting of tasks in specific phases: (i) product and process requirements and specifications; (ii and iii) study of the fibrous structure technology, textiles, and design; (iv and v) investigation of the sensor technology with respect to pressure, temperature, humidity, and bioactive properties; (vi and vii) production layout and adaptations in the manufacturing process; (viii) clinical trial. This project will introduce a new structural system and design for smart clothing to prevent PIs. New materials and architectures will be studied that provide better pressure relief, thermo-physiological control of the cutaneous microclimate, and personalisation of care.

3.
ACS Omega ; 7(26): 22383-22393, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35785261

ABSTRACT

Surface disinfection currently plays a decisive role in the epidemiological situation caused by the SARS-CoV-2 coronavirus. However, most disinfection products available on the market have a high evaporation rate and only an immediate action and not continuous, creating the need for a high frequency of disinfection. To overcome this limitation, in the present work, poly(methyl methacrylate) (PMMA) microcapsules were developed with an active agent (hydrogen peroxide) encapsulated, which has the ability to inactivate/neutralize the SARS-CoV-2 virus. PMMA-H2O2 microcapsules have a spherical shape and a smooth structure with low porosity and were successfully attached to nonwoven fabrics, as observed from scanning electron microscopy. The thermogravimetric analysis shows that PMMA-H2O2 microcapsules have high thermal stability and can increase the stability of H2O2. Nonfabric substrates functionalized with PMMA-H2O2 microcapsules were tested by a highly sensitive and specific reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR)-based method to evaluate antiviral activity through the degradation of SARS-CoV-2 deoxyribonucleic acids. The highest percentage of viral nucleic acid elimination was obtained when exposing the viral sample for 1 h to PMMA-H2O2 microcapsules, resulting in an elimination of >97% of the coronavirus. In addition, the microcapsules are stable over a period of three weeks and retain the ability to eliminate SARS-CoV-2. Hence, it is demonstrated that this microcapsule system is efficient for SARS-CoV-2 elimination and inherent surface disinfection.

4.
Graefes Arch Clin Exp Ophthalmol ; 260(12): 3825-3836, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35838808

ABSTRACT

PURPOSE: This study aims to investigate retinal and choroidal vascular reactivity to carbogen in central serous chorioretinopathy (CSC) patients. METHODS: An experimental pilot study including 68 eyes from 20 CSC patients and 14 age and sex-matched controls was performed. The participants inhaled carbogen (5% CO2 + 95% O2) for 2 min through a high-concentration disposable mask. A 30° disc-centered fundus imaging using infra-red (IR) and macular spectral domain optical coherence tomography (SD-OCT) using the enhanced depth imaging (EDI) technique was performed, both at baseline and after a 2-min gas exposure. A parametric model fitting-based approach for automatic retinal blood vessel caliber estimation was used to assess the mean variation in both arterial and venous vasculature. Choroidal thickness was measured in two different ways: the subfoveal choroidal thickness (SFCT) was calculated using a manual caliper and the mean central choroidal thickness (MCCT) was assessed using an automatic software. RESULTS: No significant differences were detected in baseline hemodynamic parameters between both groups. A significant positive correlation was found between the participants' age and arterial diameter variation (p < 0.001, r = 0.447), meaning that younger participants presented a more vasoconstrictive response (negative variation) than older ones. No significant differences were detected in the vasoreactive response between CSC and controls for both arterial and venous vessels (p = 0.63 and p = 0.85, respectively). Although the vascular reactivity was not related to the activity of CSC, it was related to the time of disease, for both the arterial (p = 0.02, r = 0.381) and venous (p = 0.001, r = 0.530) beds. SFCT and MCCT were highly correlated (r = 0.830, p < 0.001). Both SFCT and MCCT significantly increased in CSC patients (p < 0.001 and p < 0.001) but not in controls (p = 0.059 and 0.247). A significant negative correlation between CSC patients' age and MCCT variation (r = - 0.340, p = 0.049) was detected. In CSC patients, the choroidal thickness variation was not related to the activity state, time of disease, or previous photodynamic treatment. CONCLUSION: Vasoreactivity to carbogen was similar in the retinal vessels but significantly higher in the choroidal vessels of CSC patients when compared to controls, strengthening the hypothesis of a choroidal regulation dysfunction in this pathology.


Subject(s)
Central Serous Chorioretinopathy , Humans , Central Serous Chorioretinopathy/diagnosis , Fluorescein Angiography/methods , Pilot Projects , Visual Acuity , Choroid/pathology , Tomography, Optical Coherence/methods , Retrospective Studies
5.
Polymers (Basel) ; 14(9)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35566899

ABSTRACT

Essential oils (EOs) are complex mixtures of volatile compounds extracted from different parts of plants by different methods. There is a large diversity of these natural substances with varying properties that lead to their common use in several areas. The agrochemical, pharmaceutical, medical, food, and textile industry, as well as cosmetic and hygiene applications are some of the areas where EOs are widely included. To overcome the limitation of EOs being highly volatile and reactive, microencapsulation has become one of the preferred methods to retain and control these compounds. This review explores the techniques for extracting essential oils from aromatic plant matter. Microencapsulation strategies and the available technologies are also reviewed, along with an in-depth overview of the current research and application of microencapsulated EOs.

6.
Chemosphere ; 287(Pt 4): 132356, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34600009

ABSTRACT

Nanoplastics (NP) (1-100 nm) are a growing global concern, and their adverse effects in marine organisms are still scarce. This study evaluated the effects of polystyrene nanoplastics (10 µg/L; 50 nm nPS) in the marine mussel Mytilus galloprovincialis after a 21 - day exposure. The hydrodynamic diameter and zeta potential of nPS were analysed, over time, in seawater and ultrapure water. A multibiomarker approach (genotoxicity (the comet assay) was assessed in mussel haemocytes, and the antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx)), biotransformation enzyme (glutathione - S - transferase (GST)), and oxidative damage (LPO)) was assessed in gills and digestive glands to evaluate the toxicity of nPS towards mussels. In seawater, aggregation of nPS is favoured and consequently the hydrodynamic diameter increases. Genotoxicity was highly noticeable in mussels exposed to nPS, presenting a higher % tail DNA when compared to controls. Antioxidant enzymes are overwhelmed after nPS exposure, leading to oxidative damage in both tissues. Results showed that mussel tissues are incapable of dealing with the effects that this emerging stressor pursues towards the organism. The Integrated Biomarker Response index, used to summarise the biomarkers analysed into one index, shows that nPS toxicity towards mussels are both tissue and time dependent, being that gills are the tissue most compromised.


Subject(s)
Mytilus , Nanoparticles , Water Pollutants, Chemical , Animals , Biomarkers/metabolism , Gills/metabolism , Mytilus/metabolism , Nanoparticles/toxicity , Oxidative Stress , Polystyrenes/metabolism , Polystyrenes/toxicity , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
7.
J Mater Sci Mater Med ; 32(4): 38, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33792786

ABSTRACT

The use of drug delivery systems is a good technique to leave the right quantity of medicine in the patient's body in a suitable dose, because the drug application is delivered directly to the affected region. The current techniques such as HPLC and UV-Vis for the drug delivery calculation has some disadvantages, as the accuracy and the loss of the sample after characterization. With the aim of reducing the amount of material used during the characterization and have a non-destructive test with instantaneous results, the present paper shows the possibility of using electrochemical impedance spectroscopy (EIS) to have a drug delivery measurement during the release phenomena for a calcium phosphate cement (CFC) delivery system with gentamicin sulfate (GS) and lidocaine hydrochloride (LH), at a ratio of 1% and 2%, respectively. The equivalent circuit and the chemical mechanism involved during the measurements have been proposed as a tool to determine the drug delivery profile. The method has been compared with the UV-Vis technique. XRD was realized to verify conditions, before and after release. It was possible to verify the potential for using EIS as an instant technique to quantify drug delivery.


Subject(s)
Drug Delivery Systems , Electrochemistry/methods , Anti-Bacterial Agents/administration & dosage , Bone Cements/chemistry , Calcium Phosphates/chemistry , Chromatography, High Pressure Liquid , Dental Materials , Dielectric Spectroscopy , Drug Liberation , Electric Impedance , Electrolytes , Equipment Design , Gentamicins/chemistry , Glass Ionomer Cements , Humans , Kinetics , Lidocaine/chemistry , Models, Theoretical , Spectrophotometry , Spectrophotometry, Ultraviolet , X-Ray Diffraction
8.
Bioprocess Biosyst Eng ; 43(5): 785-796, 2020 May.
Article in English | MEDLINE | ID: mdl-31894389

ABSTRACT

In recent years, there has been increasing consumer interest in carotenoids, particularly of marine sustainable origin with applications in the food, cosmeceutical, nutritional supplement and pharmaceutical industries. For instance, microalgae belonging to the genus Tetraselmis are known for their biotechnologically relevant carotenoid profile. The recently isolated marine microalgal strain Tetraselmis sp. CTP4 is a fast-growing, robust industrial strain, which has successfully been produced in 100-m3 photobioreactors. However, there are no reports on total carotenoid contents from this strain belonging to T. striata/convolutae clade. Although there are several reports on extraction methods targeting chlorophytes, extraction depends on the strength of cell coverings, solvent polarity and the nature of the targeted carotenoids. Therefore, this article evaluates different extraction methods targeting Tetraselmis sp. CTP4, a strain known to contain a mechanically resistant theca. Here, we propose a factorial experimental design to compare extraction of total carotenoids from wet and freeze-dried microalgal biomass using four different solvents (acetone, ethanol, methanol or tetrahydrofuran) in combination with two types of mechanical cell disruption (glass beads or dispersion). The extraction efficiency of the methods was assessed by pigment contents and profiles present in the extracts. Extraction of wet biomass by means of glass bead-assisted cell disruption using tetrahydrofuran yielded the highest amounts of lutein and ß-carotene (622 ± 40 and 618 ± 32 µg g-1 DW, respectively). Although acetone was slightly less efficient than tetrahydrofuran, it is preferable due to its lower costs and toxicity.


Subject(s)
Chlorophyta/chemistry , Lutein , Microalgae/chemistry , beta Carotene , Lutein/chemistry , Lutein/isolation & purification , Microalgae/isolation & purification , beta Carotene/chemistry , beta Carotene/isolation & purification
9.
Sci Total Environ ; 707: 136077, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-31863978

ABSTRACT

The emergence of nanotechnologically-enabled materials, compounds or products inevitably leads to engineered nanoparticles (ENPs) released into surface waters. ENPs have already been detected in wastewater streams, drinking water sources and even in tap water at concentrations in the ng/L and µg/L range, making the latter a potential route for humans. The presence of ENPs in raw waters raises concerns over the possibility that ENPs might pose a hazard to the quality and security of drinking water and whether drinking water treatment plants (DWTPs) are prepared to handle this problem. Therefore, it is essential to critically evaluate if ENPs can be effectively removed through water treatment processes to control environmental and human health risks associated with their release. This review includes a summary of the available information on production, presence, potential hazards to human health and environment, and release and behaviour of metal-based ENPs in surface waters and drinking water. In addition, the most extensively studied water treatment processes to remove metal-based ENPs, specifically conventional and advanced processes, are discussed and highlighted in detail. Furthermore, this work identifies the research gaps regarding ENPs removal in DWTPs and discusses future aspects of ENPs in water treatment.


Subject(s)
Metal Nanoparticles , Water Purification , Drinking Water , Humans , Metals , Renal Dialysis , Water Pollutants, Chemical
10.
Ecotoxicology ; 28(3): 294-301, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30863973

ABSTRACT

The increasing use of rare earth elements (REEs) in diverse technological applications has augmented the demand and exploitation of these worldwide, leading to a higher input of REEs + Yttrium (Y) in the marine environment. The present study investigated the ecotoxicity of Lanthanum (La) and Y to Mytilus galloprovincialis developing embryos and juveniles. This was achieved by quantifying the embryogenesis success after 48 h, and survival of juveniles after 96 h of exposure to different concentrations of La and Y. Results show that both La and Y are more toxic to developing embryos and larvae than to juveniles of M. galloprovincialis. Predicted no-effect concentration (PNEC) values were also derived for the embryo development as a preliminary approach to assess the environmental risk for these compounds to marine organisms. Results revealed that La is more toxic than Y. The high sensitivity of the early developmental stages to these compounds highlight the relevance of including these stages when evaluating the toxicity of chemicals where little information is available. Although older life stages may be more tolerant to toxicants, the population survival will be compromised if new recruits are not viable, with implications to the whole ecosystem health and functioning of the impacted area. Information on the ecotoxicity of chemicals with expanded technological use and that may be released during deep-sea mining activities is urgent in order to help estimate environmental impacts.


Subject(s)
Metals, Rare Earth/toxicity , Mytilus/drug effects , Water Pollutants, Chemical/toxicity , Animals , Ecotoxicology , Embryonic Development/drug effects , Environment , Lanthanum/toxicity , Larva/drug effects , Metals, Rare Earth/metabolism , Oceans and Seas , Seafood/analysis , Water Pollutants, Chemical/metabolism , Yttrium/toxicity
11.
Bull Environ Contam Toxicol ; 102(3): 341-346, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30600390

ABSTRACT

Effects of copper oxide nanoparticles (CuO NPs) were investigated in the midgut and fat body of Galleria mellonella. Fourth instar larvae were exposed to 10 µg Cu/L of CuO until becoming last instar larvae, and catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-s-transferase (GST) and acetylcholinesterase (AChE) and metal accumulation were evaluated. Copper accumulation was observed in midgut and fat body tissues of G. mellonella larvae exposed to CuO NPs. CuO NPs increased CAT activities in midgut and fat body, while SOD activities were decreased. CuO NPs exhibited significant increases in GST activity in fat body, while no significant differences were observed in the midgut of G. mellonella larvae. AChE activity significantly decreased in the midgut of G. mellonella whereas there is no significant effect on fat body in CuO NPs exposed larvae. In overall, these findings demonstrate that tissue accumulation and oxidative stress that is countered by antioxidant enzymes occur when G. mellonella larvae exposed to environmental concentration of CuO nanoparticles.


Subject(s)
Antioxidants/metabolism , Copper/metabolism , Moths/drug effects , Nanoparticles/toxicity , Acetylcholinesterase/metabolism , Animals , Catalase/metabolism , Copper/toxicity , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Larva/drug effects , Larva/metabolism , Metal Nanoparticles , Moths/metabolism , Oxidative Stress , Oxides , Superoxide Dismutase/metabolism
12.
Water Res ; 109: 1-12, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27865169

ABSTRACT

Nanoparticles, namely titanium dioxide (TiO2), are emerging contaminants widely used to commercial and industrial applications, are a potential hazard and can cause damage to environment and human health due to their toxicity. Therefore, their removal from the water is urgent to minimize or eliminate the adverse environmental and human effects. This work, investigates the efficiency of conventional coagulation/flocculation/sedimentation (C/F/S) from drinking water treatment to remove TiO2 nanoparticles (NPs) from surface waters, and pretends to understand if the removal of TiO2 NPs affects the ability of C/F/S to remove natural organic matter (NOM) and turbidity, and consequently affects the quality of the treated water. Results show that TiO2 NPs removal is high (>90%) for all the waters studied (hydrophobic and hydrophilic waters) and the treated water quality is not compromised (turbidity, Ti and Al concentrations, pH and conductivity are below the national and international guidelines). In addition, TiO2 initial concentrations, ranging between 0.2 and 10 mg/L, have not a significant impact on NPs removal by C/F/S. Therefore, the widely used polyaluminium based coagulants are effective in the removal of TiO2 NPs by conventional C/F/S treatment, but removal is strongly influenced by the water characteristics. Hydrophobic waters need a higher coagulant dose than hydrophilic waters to achieve the same TiO2 NPs removals, as well as water with higher UV254nm values. The principal mechanism involved in TiO2 NPs removal is charge neutralisation.


Subject(s)
Drinking Water , Titanium/chemistry , Flocculation , Humans , Nanoparticles/chemistry , Water Purification , Water Quality
13.
Dalton Trans ; 45(9): 3778-90, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26818107

ABSTRACT

The reaction of the hexadentate dianionic 1,4,8,11-tetraazacyclotetradecane-based bis(phenolate) ligand, (tBu2ArO)2Me2-cyclam(2-), with [SmI2(thf )2] in thf resulted in the formation of the divalent samarium complex [Sm(κ(6)-{(tBu2ArO)2Me2-cyclam})] (1). X-ray diffraction studies revealed that after recrystallization from n-hexane/thf complex 1 has a monomeric structure and does not contain thf molecules coordinated to the Sm(II) center. However, UV-vis and (1)H NMR spectroscopy of 1 evidenced the formation of thf-solvated complexes in neat thf. Reductive studies show that complex 1 can act as a single electrontransfer reagent and form well-defined Sm(III) species. The reaction of 1 with several substrates, namely, TlBPh4, pyridine N-oxide, OPPh3, SPPh3 and bipyridines, are reported. Spectroscopy studies, including NMR, and single crystal X-ray diffraction data are in agreement with the formation of cationic Sm(III) species, monochalcogenide bridged Sm(III) complexes and Sm(III) complexes with bipyridine radical ligand, respectively.

14.
Inorg Chem ; 54(18): 9115-26, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26355956

ABSTRACT

A new monoiodide U(III) complex anchored on a hexadentate dianionic 1,4,8,11-tetraazacyclotetradecane-based bis(phenolate) ligand, [U(κ(6)-{((tBu2)ArO)2Me2-cyclam})I] (1), was synthesized from the reaction of [UI3(THF)4] (THF = tetrahydrofuran) and the respective potassium salt K2((tBu2)ArO)2Me2-cyclam and structurally characterized. Reactivity of 1 toward one-, two-, and four-electron oxidants was studied to explore the reductive chemistry of this new U(III) complex. Complex 1 reacts with one-electron oxidizers, such as iodine and TlBPh4, to form the seven-coordinate cationic uranium(IV) complexes [U(κ(6)-{((tBu2)ArO)2Me2-cyclam})I][X] (X = I (2-I), BPh4 (2-BPh4)). The new uranium(III) complex reacts with inorganic azides to yield the pseudohalide uranium(IV) complex [U(κ(6)-{((tBu2)ArO)2Me2-cyclam})(N3)2] (4) and the nitride-bridged diuranium(IV/IV) complex [(κ(4)-{((tBu2)ArO)2Me2-cyclam})(N3)U(µ-N)U(κ(5)-{((tBu2)ArO)2Me2-cyclam})] (5). Two equivalents of [U(κ(6)-{((tBu2)ArO)2Me2-cyclam})I] (1) effect the four-electron reduction of 1 equiv of PhN═NPh to form the bis(imido) complex [U(κ(4)-{((tBu2)ArO)2Me2-cyclam})(NPh)2] (6) and the U(IV) species 2-I. Moreover, the hemilability of the hexadentate ancillary ligand ((tBu2)ArO)2Me2-cyclam(2-) allows to perform the reductive cleavage of azobenzene with an unprecedented formation of a trans-bis(imido) complex. The complexes were characterized by NMR spectroscopy, and all the new uranium complexes were structurally authenticated by single-crystal X-ray diffraction.

15.
Mar Environ Res ; 111: 74-88, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26152602

ABSTRACT

The increasing production and application of engineered nanomaterials (ENMs) in consumer products over the past decade will inevitably lead to their release into aquatic systems and thereby cause the exposure to aquatic organisms, resulting in growing environmental and human health concern. Since bivalves are widely used in the monitoring of aquatic pollution, the aim of this review was to compile and analyse data concerning the ecotoxicity of ENMs using bivalve molluscs. The state of the art regarding the experimental approach, characterization, behaviour, fate, bioaccumulation, tissue and subcellular distribution and mechanisms of toxicity of ENMs in marine and freshwater bivalve molluscs is summarized to achieve a new insight into the mode of action of these nanoparticles in invertebrate organisms. This review shows that the studies about the toxic effects of ENMs in bivalves were conducted mainly with seawater species compared to freshwater ones and that the genus Mytilus is the main taxa used as a model system. There is no standardization of experimental approaches for toxicity testing and reviewed data indicate the need to develop standard protocols for ENMs ecotoxicological testing. In general, the main organ for ENM accumulation is the digestive gland and their cellular fate differs according to nano-specific properties, experimental conditions and bivalve species. Endosomal-lysosomal system and mitochondria are the major cellular targets of ENMs. Metal based ENMs mode of action is related mainly to the dissolution and/or release of the chemical component of the particle inducing immunotoxicity, oxidative stress and cellular injury to proteins, membrane and DNA damage. This review indicates that the aquatic environment is the potential ultimate fate for ENMs and confirms that bivalve molluscs are key model species for monitoring aquatic pollution by ENMs.


Subject(s)
Bivalvia/drug effects , Nanoparticles/toxicity , Toxicity Tests , Water Pollutants, Chemical/toxicity , Animals , Ecotoxicology , Mytilus/drug effects
16.
Environ Pollut ; 204: 207-14, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25982546

ABSTRACT

Environmental health hazards of Quantum Dots (QDs) are of emergent concern, but limited data is available about their toxicokinetics (TK) and tissue distribution in marine bivalves. This study investigated the QDs behavior in seawater, their TK and tissue distribution in Mytilus galloprovincialis, in comparison with soluble Cd. Mussels were exposed to CdTe QDs and soluble Cd for 21 days at 10 µgCd L(-1) followed by a 50 days depuration. TK of QDs in mussels is related to the homo-aggregate uptake, surface charge, aggregation and precipitation as key factors. There were tissue- and time-dependent differences in the TK of both Cd forms, and soluble Cd is the most bioavailable form. Digestive gland is a preferential site for QDs storage and both Cd forms are not eliminated by mussels (t1/2>50 days). Results indicate that the TK model of CdTe QDs in marine mussels is distinct from their soluble counterparts.


Subject(s)
Cadmium/pharmacokinetics , Mytilus/chemistry , Quantum Dots/toxicity , Water Pollutants, Chemical/pharmacokinetics , Animals , Cadmium/toxicity , Mytilus/drug effects , Quantum Dots/chemistry , Tissue Distribution , Toxicokinetics , Water Pollutants, Chemical/toxicity
17.
Mar Environ Res ; 101: 29-37, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25164019

ABSTRACT

There is an increased use of Quantum Dot (QDs) in biological and biomedical applications, but little is known about their marine ecotoxicology. So, the aim of this study was to investigate the possible immunocytotoxic, cytogenotoxic and genotoxic effects of cadmium telluride QDs (CdTe QDs) on the marine mussel Mytilus galloprovincialis. Mussels were exposed to 10 µg L(-1) of CdTe QDs or to soluble Cd [Cd(NO3)2] for 14 days and Cd accumulation, immunocytotoxicity [hemocyte density, cell viability, lysosomal membrane stability (LMS), differential cell counts (DCC)], cytogenotoxicity (micronucleus test and nuclear abnormalities assay) and genotoxicity (comet assay) were analyzed. Results show that in vivo exposure to QDs, Cd is accumulated in mussel soft tissues and hemolymph and induce immunotoxic effects mediated by a decrease in LMS, changes in DCC, as well as genotoxicity (DNA damage). However, QDs do not induce significant changes in hemocytes density, cell viability and cytogenetic parameters in opposition to Cd(2+). Soluble Cd is the most cytotoxic and cytogenotoxic form on Mytilus hemocytes due to a higher accumulation of Cd in tissues. Results indicate that immunotoxicity and genotoxicity of CdTe QDs and Cd(2+) are mediated by different modes of action and show that Mytilus hemocytes are important targets for in vivo QDs toxicity.


Subject(s)
Cadmium Compounds/toxicity , Environmental Exposure/analysis , Mytilus/drug effects , Quantum Dots/toxicity , Tellurium/toxicity , Animals , Cadmium Compounds/chemistry , Hemocytes/drug effects , Stress, Physiological , Tellurium/chemistry , Toxicity Tests
18.
Mar Environ Res ; 101: 208-214, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25066339

ABSTRACT

Silver nanoparticles (Ag NPs) have emerged as one of the most commonly used NPs in a wide range of industrial and commercial applications. This has caused increasing concern about their fate in the environment as well as uptake and potential toxicity towards aquatic organisms. Accordingly, mussels Mytilus galloprovincialis were exposed to 10 µg L(-1) of Ag NPs and ionic silver (Ag+) for 15 days, and biomarkers of oxidative stress and metal accumulation were determined. Accumulation results show that both Ag NPs and Ag+ accumulated in both gills and digestive glands. Antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) were activated by Ag NPs and Ag+, showing different antioxidant patterns in both gills and digestive glands. Moreover, metallothionein was inducted in gills, directly related to Ag accumulation, while in the digestive glands only a small fraction of Ag seems to be associated with this protein. Lipid peroxidation was higher in gills exposed to Ag NPs, whereas in the digestive glands only Ag+ induced lipid peroxidation. Ag NPs and Ag+ cause oxidative stress with distinct modes of action and it's not clear if for Ag NPs the observed effects are attributed to free Ag+ ions associated with the nanoparticle effect.


Subject(s)
Environmental Exposure , Metal Nanoparticles/toxicity , Mytilus/drug effects , Oxidative Stress , Silver/toxicity , Animals , Lipid Peroxidation , Mytilus/metabolism , Mytilus/physiology
19.
Ecotoxicology ; 20(8): 1959-74, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21769590

ABSTRACT

The present work integrates the active biomonitoring (ABM) concept in mussels Mytilus galloprovincialis from the South coast of Portugal transplanted during 28 days between two sites with different sources of contamination, and vice versa, in order to assess biological effects in these mussels. For that purpose a multibiomarker approach was used. The suit of biomarkers indicative of metal contamination were metallothioneins (MT) and the enzyme δ-aminolevulinic acid dehydratase (ALAD), for organic contamination mixed function oxidase system (MFO), glutathione-S-transferase (GST) and acetylcholinesterase (AChE), as oxidative stress biomarkers superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and lipid peroxidation (LPO). These biomarkers were used to determine an index to evaluate the stress levels in these two sites. Site A is strongly influenced by metallic contamination, with higher Cu, Cr and Pb in M. galloprovincialis, as well as higher MT levels, antioxidant enzymes activities and LPO concentrations, and lower ALAD activity. In site B organic compounds (PAHs) are prevalent and native mussels show higher activities of the MFO system components and GST. Transplanted mussels had significant alterations in some biomarkers that reflect the type of contaminants present in each site, which demonstrates the primary role of the environment in determining the physiological characteristics of resident mussels. Therefore the application of ABM using a battery of biomarkers turns out to be a useful approach in sites where usually complex mixtures of contaminants occurs. In this study the biomarkers that better differentiate the impact of different contaminants at each site were MT, CYP450, SOD and CAT.


Subject(s)
Biomarkers/analysis , Mytilus/drug effects , Mytilus/physiology , Water Pollutants, Chemical/metabolism , Water Pollution , Acetylcholinesterase/metabolism , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Catalase/metabolism , Cytochrome P-450 Enzyme System/metabolism , Environmental Exposure , Environmental Monitoring/methods , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Lipid Peroxidation/drug effects , Metallothionein/metabolism , Metals, Heavy/analysis , Metals, Heavy/toxicity , Oxidative Stress , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/toxicity , Porphobilinogen Synthase/metabolism , Portugal , Superoxide Dismutase/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
20.
Water Res ; 44(11): 3337-44, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20362317

ABSTRACT

Dissolved air flotation (DAF) performance with two different naturally occurring cyanobacterial morphologies was investigated with respect to the biomass removal efficiency, the toxin release to water and the coagulant demand by different water background natural organic matter (NOM). Coagulation (C)/Flocculation (F)/DAF bench-scale experiments (2 min coagulation at 380 s(-1) with polyaluminium chloride (0.5-4 mg/L Al(2)O(3), the dose depending on the water NOM content); 8 min flocculation at 70 s(-1); 8 min DAF with 5 bar relative pressure and 8% pressurised recycle) were performed with single cells of Microcystis aeruginosa and Planktothrix rubescens filaments spiked in synthetic waters with different NOM contents (hydrophobic vs. hydrophilic NOM; moderate (2-3 mgC/L) vs. moderate-high concentration (ca. 6 mgC/L)). For both morphologies, the results show no apparent cyanobacterial damage (since the water quality did not degrade in dissolved microcystins and the removal of intracellular microcystins matched the removal of chlorophyll a) and high biomass removal efficiencies (93-99% for cells and 92-98% for filaments) provided optimal coagulant dose for chlorophyll a removal was ensured. Charge neutralisation by the polyaluminium chloride was the main coagulation mechanism of the M. aeruginosa cells and most likely also of the P. rubescens filaments. The specific coagulant demand was severely affected by NOM hydrophobicity, hydrophobic NOM (with a specific UV(254nm) absorbance, SUVA, above 4 L/(m mgC)) requiring ca. the triple of hydrophilic NOM (SUVA below 3 L/(m mgC)), i.e. 0.7 vs. 0.2-0.3 mg Al(2)O(3)/mg DOC.


Subject(s)
Cyanobacteria/isolation & purification , Water Pollutants/isolation & purification , Water Purification/methods , Flocculation , Water Pollutants/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...