Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 38(6): e9657, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38342682

ABSTRACT

RATIONALE: Characterization of Regolith And Trace Economic Resources (CRATER), an Orbitrap™-based laser desorption mass spectrometry instrument designed to conduct high-precision, spatially resolved analyses of planetary materials, is capable of answering outstanding science questions about the Moon's formation and the subsequent processes that have modified its (sub)surface. METHODS: Here, we describe the baseline design of the CRATER flight model, which requires <20 000 cm3  volume, <10 kg mass, and <60 W peak power. The analytical capabilities and performance metrics of a prototype that meets the full functionality of the flight model are demonstrated. RESULTS: The instrument comprises a high-power, solid-state, pulsed ultraviolet (213 nm) laser source to ablate the surface of the lunar sample, a custom ion optical interface to accelerate and collimate the ions produced at the ablation site, and an Orbitrap mass analyzer capable of discriminating competing isobars via ultrahigh mass resolution and high mass accuracy. The CRATER instrument can measure elemental and isotopic abundances and characterize the organic content of lunar surface samples, as well as identify economically valuable resources for future exploration. CONCLUSION: An engineering test unit of the flight model is currently in development to serve as a pathfinder for near-term mission opportunities.

2.
Astrobiology ; 23(6): 657-669, 2023 06.
Article in English | MEDLINE | ID: mdl-37134219

ABSTRACT

Studies of psychrophilic life on Earth provide chemical clues as to how extraterrestrial life could maintain viability in cryogenic environments. If living systems in ocean worlds (e.g., Enceladus) share a similar set of 3-mer and 4-mer peptides to the psychrophile Colwellia psychrerythraea on Earth, spaceflight technologies and analytical methods need to be developed to detect and sequence these putative biosignatures. We demonstrate that laser desorption mass spectrometry, as implemented by the CORALS spaceflight prototype instrument, enables the detection of protonated peptides, their dimers, and metal adducts. The addition of silicon nanoparticles promotes the ionization efficiency, improves mass resolving power and mass accuracies via reduction of metastable decay, and facilitates peptide de novo sequencing. The CORALS instrument, which integrates a pulsed UV laser source and an Orbitrap™ mass analyzer capable of ultrahigh mass resolving powers and mass accuracies, represents an emerging technology for planetary exploration and a pathfinder for advanced technique development for astrobiological objectives. Teaser: Current spaceflight prototype instrument proposed to visit ocean worlds can detect and sequence peptides that are found enriched in at least one strain of microbe surviving in subzero icy brines via silicon nanoparticle-assisted laser desorption analysis.


Subject(s)
Nanoparticles , Space Flight , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Silicon/chemistry , Peptides , Nanoparticles/chemistry
3.
Int J Mass Spectrom ; 422: 177-187, 2017 Nov.
Article in English | MEDLINE | ID: mdl-33005095

ABSTRACT

The Mars Organic Molecule Analyzer (MOMA), a dual-source, ion trap-based instrument capable of both pyrolysis-gas chromatography mass spectrometry (pyr/GC-MS) and laser desorption/ionization mass spectrometry (LDI-MS), is the core astrobiology investigation on the ExoMars rover. The MOMA instrument will be the first spaceflight mass analyzer to exploit the LDI technique to detect refractory organic compounds and characterize host mineralogy; this mode of analysis will be conducted at Mars ambient conditions. In order to achieve high performance in the Martian environment while keeping the instrument compact and low power, a number of innovative designs and components have been implemented for MOMA. These include a miniaturized linear ion trap (LIT), a fast actuating aperture valve with ion inlet tube. and a Microelectromechanical System (MEMS) Pirani sensor. Advanced analytical capabilities like Stored Waveform Inverse Fourier Transform (SWIFT) for selected ion ejection and tandem mass spectrometry (MS/MS) are realized in LDI-MS mode, and enable the isolation and enhancement of specific mass ranges and structural analysis, respectively. We report here the technical details of these instrument components as well as system-level analytical capabilities, and we review the applications of this technology to Mars and other high-priority targets of planetary exploration.

SELECTION OF CITATIONS
SEARCH DETAIL
...