Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 137(45): 14406-22, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26542645

ABSTRACT

The syntheses, structures, and magnetic properties of four new complex salts, (PPN){[Mn(III)(salphen)(MeOH)]2[M(III)(CN)6]}·7MeOH (Mn2M·7MeOH) (M = Fe, Ru, Os and Co; PPN(+) = bis(triphenylphosphoranylidene)ammonium cation; H2salphen = N,N'-bis(salicylidene)-1,2-diaminobenzene), and a mixed metal Co/Os analogue (PPN){[Mn(III)(salphen)(MeOH)]2[Co(III)0.92Os(III)0.08(CN)6]}·7MeOH were undertaken. It was found that all compounds exhibit switchable single-molecule magnet (SMM) and exchange-bias behavior depending on the interstitial methanol content. The pristine (PPN){[Mn(salphen)(MeOH)]2[Os(CN)6]}·7MeOH (Mn2Os·7MeOH) behaves as an SMM with an effective barrier for the magnetization reversal, (Ueff/kB), of 17.1 K. Upon desolvation, Mn2Os exhibits an increase of Ueff/kB to 42.0 K and an opening of the hysteresis loop observable at 1.8 K. Mn2Os·7MeOH shows also exchange-bias behavior with magnetic hysteresis loops exhibiting a shift in the quantum tunneling to 0.25 T from zero-field. The Fe(III) and Ru(III) analogues were prepared as reference compounds for assessing the effect of the 5d versus 4d and 3d metal ions on the SMM properties. These compounds are also SMMs and exhibit similar effects but with lower energy barriers. These findings underscore the importance of introducing heavy transition elements into SMMs to improve their slow relaxation of the magnetization properties. The (PPN){[Mn(III)(salphen)(MeOH)]2[Co(III)(CN)6]}·7MeOH (Mn2Co·7MeOH) analogue with a diamagnetic Co(III) central atom and the mixed Co/Os (PPN){[Mn(III)(salphen)(MeOH)]2[Co(III)0.92Os(III)0.08(CN)6]}·7MeOH (Mn2Co/Os·7MeOH) "magnetically diluted" system with a 9:1 Co/Os metal ratio were prepared in order to further probe the nature of the energy barrier increase upon desolvation of Mn2Os. In addition, inelastic neutron scattering and frequency-domain Fourier-transform THz electron paramagnetic resonance spectra obtained on Mn2Os·7MeOH and Mn2Os in combination with the magnetic data revealed the presence of anisotropic exchange interactions between Mn(III) and Os(III) ions.

2.
Phys Rev Lett ; 108(7): 077208, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22401252

ABSTRACT

Gaining control of the building blocks of magnetic materials and thereby achieving particular characteristics will make possible the design and growth of bespoke magnetic devices. While progress in the synthesis of molecular materials, and especially coordination polymers, represents a significant step towards this goal, the ability to tune the magnetic interactions within a particular framework remains in its infancy. Here we demonstrate a chemical method which achieves dimensionality selection via preferential inhibition of the magnetic exchange in an S=1/2 antiferromagnet along one crystal direction, switching the system from being quasi-two- to quasi-one-dimensional while effectively maintaining the nearest-neighbor coupling strength.

3.
Inorg Chem ; 51(4): 1989-91, 2012 Feb 20.
Article in English | MEDLINE | ID: mdl-22283606

ABSTRACT

Square-planar S = 1/2 Ag(II) ions in polymeric Ag(nic)(2) are linked by bridging nic monoanions to yield 2D corrugated sheets. Long-range magnetic order occurs below T(N) = 11.8(2) K due to interlayer couplings that are estimated to be about 30 times weaker than the intralayer exchange interaction.

4.
Inorg Chem ; 50(13): 5990-6009, 2011 Jul 04.
Article in English | MEDLINE | ID: mdl-21598910

ABSTRACT

[Ni(HF(2))(pyz)(2)]X {pyz = pyrazine; X = PF(6)(-) (1), SbF(6)(-) (2)} were structurally characterized by synchrotron X-ray powder diffraction and found to possess axially compressed NiN(4)F(2) octahedra. At 298 K, 1 is monoclinic (C2/c) with unit cell parameters, a = 9.9481(3), b = 9.9421(3), c = 12.5953(4) Å, and ß = 81.610(3)° while 2 is tetragonal (P4/nmm) with a = b = 9.9359(3) and c = 6.4471(2) Å and is isomorphic with the Cu-analogue. Infinite one-dimensional (1D) Ni-FHF-Ni chains propagate along the c-axis which are linked via µ-pyz bridges in the ab-plane to afford three-dimensional polymeric frameworks with PF(6)(-) and SbF(6)(-) counterions occupying the interior sites. A major difference between 1 and 2 is that the Ni-F-H bonds are bent (∼157°) in 1 but are linear in 2. Ligand field calculations (LFT) based on an angular overlap model (AOM), with comparison to the electronic absorption spectra, indicate greater π-donation of the HF(2)(-) ligand in 1 owing to the bent Ni-F-H bonds. Magnetic susceptibility data for 1 and 2 exhibit broad maxima at 7.4 and 15 K, respectively, and λ-like peaks in dχT/dT at 6.2 and 12.2 K that are ascribed to transitions to long-range antiferromagnetic order (T(N)). Muon-spin relaxation and specific heat studies confirm these T(N)'s. A comparative analysis of χ vs T to various 1D Heisenberg/Ising models suggests moderate antiferromagnetic interactions, with the primary interaction strength determined to be 3.05/3.42 K (1) and 5.65/6.37 K (2). However, high critical fields of 19 and 37.4 T obtained from low temperature pulsed-field magnetization data indicate that a single exchange constant (J(1D)) alone is insufficient to explain the data and that residual terms in the spin Hamiltonian, which could include interchain magnetic couplings (J(⊥)), as mediated by Ni-pyz-Ni, and single-ion anisotropy (D), must be considered. While it is difficult to draw absolute conclusions regarding the magnitude (and sign) of J(⊥) and D based solely on powder data, further support offered by related Ni(II)-pyz compounds and our LFT and density-functional theory (DFT) results lead us to a consistent quasi-1D magnetic description for 1 and 2.


Subject(s)
Electrons , Magnetics , Organometallic Compounds/chemistry , Quantum Theory , Hydrofluoric Acid/chemistry , Molecular Structure , Nickel/chemistry , Organometallic Compounds/chemical synthesis , Pyrazines/chemistry
5.
J Am Chem Soc ; 131(13): 4590-1, 2009 Apr 08.
Article in English | MEDLINE | ID: mdl-19334770

ABSTRACT

X-ray powder diffraction and magnetic susceptibility measurements show that Ag(pyz)(2)(S(2)O(8)) consists of 2D square nets of Ag(2+) ions resulting from the corner-sharing of axially elongated AgN(4)O(2) octahedra and exhibits characteristic 2D antiferromagnetism. Nevertheless, mu(+)SR measurements indicate that Ag(pyz)(2)(S(2)O(8)) undergoes 3D magnetic ordering below 7.8(3) K.

6.
J Am Chem Soc ; 131(19): 6733-47, 2009 May 20.
Article in English | MEDLINE | ID: mdl-19290599

ABSTRACT

Three Cu(2+)-containing coordination polymers were synthesized and characterized by experimental (X-ray diffraction, magnetic susceptibility, pulsed-field magnetization, heat capacity, and muon-spin relaxation) and electronic structure studies (quantum Monte Carlo simulations and density functional theory calculations). [Cu(HF(2))(pyz)(2)]SbF(6) (pyz = pyrazine) (1a), [Cu(2)F(HF)(HF(2))(pyz)(4)](SbF(6))(2) (1b), and [CuAg(H(3)F(4))(pyz)(5)](SbF(6))(2) (2) crystallize in either tetragonal or orthorhombic space groups; their structures consist of 2D square layers of [M(pyz)(2)](n+) that are linked in the third dimension by either HF(2)(-) (1a and 1b) or H(3)F(4)(-) (2). The resulting 3D frameworks contain charge-balancing SbF(6)(-) anions in every void. Compound 1b is a defective polymorph of 1a, with the difference being that 50% of the HF(2)(-) links are broken in the former, which leads to a cooperative Jahn-Teller distortion and d(x(2))(-y(2)) orbital ordering. Magnetic data for 1a and 1b reveal broad maxima in chi at 12.5 and 2.6 K and long-range magnetic order below 4.3 and 1.7 K, respectively, while 2 displays negligible spin interactions owing to long and disrupted superexchange pathways. The isothermal magnetization, M(B), for 1a and 1b measured at 0.5 K reveals contrasting behaviors: 1a exhibits a concave shape as B increases to a saturation field, B(c), of 37.6 T, whereas 1b presents an unusual two-step saturation in which M(B) is convex until it reaches a step near 10.8 T and then becomes concave until saturation is reached at 15.8 T. The step occurs at two-thirds of M(sat), suggesting the presence of a ferrimagnetic structure. Compound 2 shows unusual hysteresis in M(B) at low temperature, although chi vs T does not reveal the presence of a magnetic phase transition. Quantum Monte Carlo simulations based on an anisotropic cubic lattice were applied to the magnetic data of 1a to afford g = 2.14, J = -13.4 K (Cu-pyz-Cu), and J(perpendicular) = -0.20 K (Cu-F...H...F-Cu), while chi vs T for 1b could be well reproduced by a spin-1/2 Heisenberg uniform chain model for g = 2.127(1), J(1) = -3.81(1), and zJ(2) = -0.48(1) K, where J(1) and J(2) are the intra- and interchain exchange couplings, respectively, which considers the number of magnetic nearest-neighbors (z). The M(B) data for 1b could not be satisfactorily explained by the chain model, suggesting a more complex magnetic structure in the ordered state and the need for additional terms in the spin Hamiltonian. The observed variation in magnetic behaviors is driven by differences in the H...F hydrogen-bonding motifs.

7.
Dalton Trans ; (48): 5655-7, 2007 Dec 28.
Article in English | MEDLINE | ID: mdl-18060109

ABSTRACT

The H(2)F(3)(-) anion in mononuclear [Cu(dpd)(2)][(H(2)F(3))(2)] (dpd = di-2-pyridyl-methanediol) exists as a HF(2)(-)/HF adduct as evidenced by infrared spectroscopy and X-ray crystallography.

SELECTION OF CITATIONS
SEARCH DETAIL
...