Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Cardiovasc Digit Health J ; 4(4): 111-117, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37600447

ABSTRACT

Background: CommandEP™ is a mixed reality (MXR) system for cardiac electrophysiological (EP) procedures that provides a real-time 3-dimensional digital image of cardiac geometry and catheter locations. In a previous study, physicians using the system demonstrated improved navigational accuracy. This study investigated the impact of the CommandEP system on EP procedural times compared to the standard-of-care electroanatomic mapping system (EAMS) display. Objective: The purpose of this retrospective case-controlled analysis was to evaluate the impact of a novel MXR interface on EP procedural times compared to a case-matched cohort. Methods: Cases from the Cardiac Augmented REality (CARE) study were matched for diagnosis and weight using a contemporary cohort. Procedural time was compared from the roll-in and full implementation cohort. During routine EP procedures, operators performed tasks during the postablation waiting phase, including creation of cardiac geometry and 5-point navigation under 2 conditions: (1) EAMS first; and (2) CommandEP. Results: From a total of 16 CARE study patients, the 10 full implementation patients were matched to a cohort of 20 control patients (2 controls:1 CARE, matched according to pathology and age/weight). No statistical difference in total case times between CARE study patients vs control group (118 ± 29 minutes vs 97 ± 20 minutes; P = .07) or fluoroscopy times (6 ± 4 minutes vs 7 ± 6 minutes; P = .9). No significant difference in case duration for CARE study patients comparing roll-in vs full-implementation cohort (121 ± 26 minutes vs 118 ± 29 minutes; P = .96). CommandEP wear time during cases was significantly longer in full implementation cases (53 ± 24 minutes vs 24 ± 5 minutes; P = .0009). During creation of a single cardiac geometry, no significant time difference was noted between CommandEP vs EAMS (284 ± 45 seconds vs 268 ± 43 seconds; P = .1) or fluoroscopy use (9 ± 19 seconds vs 6 ± 18 seconds; P = .25). During point navigation tasks, there was no difference in total time (CommandEP 31 ± 14 seconds vs EAMS 28 ± 15 seconds; P = .16) or fluoroscopy time (CommandEP 0 second vs EAMS 0 second). Conclusion: MXR did not prolong overall procedural time compared to a matched cohort. There was no prolongation in study task completion time. Future studies with experienced CommandEP users directly assessing procedural time and task completion time in a randomized study population would be of interest.

2.
Cardiovasc Digit Health J ; 3(5): 232-240, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36310686

ABSTRACT

Background: Use of ultrasound (US) to facilitate vascular access has increased compared to landmark-based procedures despite ergonomic challenges and need for extrapolation of 2-dimensional images to understand needle position. The MantUS™ system (Sentiar, Inc.,) uses a mixed reality (MxR) interface to display US images and integrate real-time needle tracking. Objective: The purpose of this prospective preclinical study was to evaluate the feasibility and usability of MantUS in a simulated environment. Methods: Participants were recruited from pediatric cardiology and critical care. Access was obtained in 2 vascular access training models: a femoral access model and a head and neck model for a total of 4 vascular access sites under 2 conditions-conventional US and MantUS. Participants were randomized for order of completion. Videos were obtained, and quality of access including time required, repositions, number of attempts, and angle of approach were quantified. Results: Use of MantUS resulted in an overall reduction in number of needle repositions (P = .03) and improvement in quality of access as measured by distance (P <.0001) and angle of elevation (P = .006). These findings were even more evident in the right femoral vein (RFV) access site, which was a simulated anatomic variant with a deeper more oblique vascular course. Use of MantUS resulted in faster time to access (P = .04), fewer number of both access attempts (P = .02), and number of needle repositions (P <.0001) compared to conventional US. Postparticipant survey showed high levels of usability (87%) and a belief that MantUS may decrease adverse outcomes (73%) and failed access attempts (83%). Conclusion: Use of MantUS improved vascular access among all comers, including the quality of access. This improvement was even more notable in the vascular variant (RFV). MantUS readily benefited users by providing improved spatial understanding. Further development of MantUS will focus on improving user interface and experience, with larger clinical usage and in-human studies.

3.
Comput Biol Med ; 133: 104366, 2021 06.
Article in English | MEDLINE | ID: mdl-33836448

ABSTRACT

BACKGROUND: Recently, an augmented reality (AR) solution allows the physician to place the ablation catheter at the designated lesion site more accurately during cardiac electrophysiology studies. The improvement in navigation accuracy may positively affect ventricular tachycardia (VT) ablation termination, however assessment of this in the clinic would be difficult. Novel personalized virtual heart technology enables non-invasive identification of optimal lesion targets for infarct-related VT. This study aims to evaluate the potential impact of such catheter navigation accuracy improvement in virtual VT ablations. METHODS: 2 MRI-based virtual hearts with 2 in silico induced VTs (VT 1, VT 2) were included. VTs were terminated with virtual "ground truth" endocardial ablation lesions. 106 navigation error values that were previously assessed in a clinical study evaluating the improvement of ablation catheter navigation accuracy guided with AR (53 with, 53 without) were used to displace the "ground truth" ablation targets. The corresponding ablations were simulated based on these errors and VT termination for each simulation was assessed. RESULTS: In 54 VT 1 ablation simulations, smaller error with AR significantly resulted in more VT termination (25) compared to the error without AR (16) (P < 0.01). In 52 VT 2 ablation simulations, no significant difference was observed from error with (11) and without AR (13) (P = 0.58). The substrate characteristic may impact the effect of improved accuracy to an improved VT termination. CONCLUSION: Virtual heart shows that the increased catheter navigation accuracy provided by AR guidance can affect the VT termination.


Subject(s)
Augmented Reality , Catheter Ablation , Tachycardia, Ventricular , Catheters , Humans , Tachycardia, Ventricular/diagnostic imaging , Tachycardia, Ventricular/surgery , Treatment Outcome
4.
IEEE J Transl Eng Health Med ; 9: 4900214, 2021.
Article in English | MEDLINE | ID: mdl-33489483

ABSTRACT

Many clinical procedures would benefit from direct and intuitive real-time visualization of anatomy, surgical plans, or other information crucial to the procedure. Three-dimensional augmented reality (3D-AR) is an emerging technology that has the potential to assist physicians with spatial reasoning during clinical interventions. The most intriguing applications of 3D-AR involve visualizations of anatomy or surgical plans that appear directly on the patient. However, commercially available 3D-AR devices have spatial localization errors that are too large for many clinical procedures. For this reason, a variety of approaches for improving 3D-AR registration accuracy have been explored. The focus of this review is on the methods, accuracy, and clinical applications of registering 3D-AR devices with the clinical environment. The works cited represent a variety of approaches for registering holograms to patients, including manual registration, computer vision-based registration, and registrations that incorporate external tracking systems. Evaluations of user accuracy when performing clinically relevant tasks suggest that accuracies of approximately 2 mm are feasible. 3D-AR device limitations due to the vergence-accommodation conflict or other factors attributable to the headset hardware add on the order of 1.5 mm of error compared to conventional guidance. Continued improvements to 3D-AR hardware will decrease these sources of error.


Subject(s)
Augmented Reality , Surgery, Computer-Assisted , Humans , Imaging, Three-Dimensional
5.
Virtual Augment Mixed Real (2021) ; 12770: 117-133, 2021 Jul.
Article in English | MEDLINE | ID: mdl-35079751

ABSTRACT

The extended realities, including virtual, augmented, and mixed realities (VAMR) have recently experienced significant hardware improvement resulting in an expansion in medical applications. These applications can be classified by the target end user (for instance, classifying applications as patient-centric, physician-centric, or both) or by use case (for instance educational, diagnostic tools, therapeutic tools, or some combination). When developing medical applications in VAMR, careful consideration of both the target end user and use case must heavily influence design considerations, particularly methods and tools for interaction and navigation. Medical imaging consists of both 2-dimensional and 3-dimensional medical imaging which impacts design, interaction, and navigation. Additionally, medical applications need to comply with regulatory considerations which will also influence interaction and design considerations. In this manuscript, the authors explore these considerations using three VAMR tools being developed for cardiac electrophysiology procedures.

7.
IEEE J Transl Eng Health Med ; 8: 1900810, 2020.
Article in English | MEDLINE | ID: mdl-32742821

ABSTRACT

Cardiac electrophysiology procedures present the physician with a wealth of 3D information, typically presented on fixed 2D monitors. New developments in wearable mixed reality displays offer the potential to simplify and enhance 3D visualization while providing hands-free, dynamic control of devices within the procedure room. OBJECTIVE: This work aims to evaluate the performance and quality of a mixed reality system designed for intraprocedural use in cardiac electrophysiology. METHOD: The Enhanced Electrophysiology Visualization and Interaction System (ELVIS) mixed reality system performance criteria, including image quality, hardware performance, and usability were evaluated using existing display validation procedures adapted to the electrophysiology specific use case. Additional performance and user validation were performed through a 10 patient, in-human observational study, the Engineering ELVIS (E2) Study. RESULTS: The ELVIS system achieved acceptable frame rate, latency, and battery runtime with acceptable dynamic range and depth distortion as well as minimal geometric distortion. Bench testing results corresponded with physician feedback in the observational study, and potential improvements in geometric understanding were noted. CONCLUSION: The ELVIS system, based on current commercially available mixed reality hardware, is capable of meeting the hardware performance, image quality, and usability requirements of the electroanatomic mapping display for intraprocedural, real-time use in electrophysiology procedures. Verifying off the shelf mixed reality hardware for specific clinical use can accelerate the adoption of this transformative technology and provide novel visualization, understanding, and control of clinically relevant data in real-time.

8.
Virtual Augment Mixed Real (2020) ; 12191: 341-356, 2020.
Article in English | MEDLINE | ID: mdl-34327520

ABSTRACT

With the rapid expansion of hardware options in the extended realities (XRs), there has been widespread development of applications throughout many fields, including engineering, entertainment and medicine. Development of medical applications for the XRs have a unique set of considerations during development and human factors testing. Additionally, understanding the constraints of the user and the use case allow for iterative improvement. In this manuscript, the authors discuss the considerations when developing and performing human factors testing for XR applications, using the Enhanced ELectrophysiology Visualization and Interaction System (ELVIS) as an example. Additionally, usability and critical interpersonal interaction data from first-in-human testing of ELVIS are presented.

9.
Trends Cardiovasc Med ; 30(3): 143-148, 2020 04.
Article in English | MEDLINE | ID: mdl-31076168

ABSTRACT

Recent miniaturization of electronic components and advances in image processing software have facilitated the entry of extended reality technology into clinical practice. In the last several years, the number of applications in cardiology has multiplied, with many promising to become standard of care. We review many of these applications in the areas of patient and physician education, cardiac rehabilitation, pre-procedural planning and intraprocedural use. The rapid integration of these approaches into the many facets of cardiology suggests that they will one day become an every-day part of physician practice.


Subject(s)
Augmented Reality , Cardiologists , Cardiology/methods , Software Design , Virtual Reality , Attitude of Health Personnel , Attitude to Computers , Cardiologists/education , Cardiologists/psychology , Cardiology/education , Diagnosis, Computer-Assisted/methods , Diffusion of Innovation , Education, Medical/methods , Equipment Design , Health Knowledge, Attitudes, Practice , Humans , Image Processing, Computer-Assisted/methods , Miniaturization , Patient Education as Topic/methods , Smart Glasses , Therapy, Computer-Assisted/methods
10.
Curr Treat Options Cardiovasc Med ; 21(4): 18, 2019 Mar 30.
Article in English | MEDLINE | ID: mdl-30929093

ABSTRACT

PURPOSE OF REVIEW: Advances in display technology and computing have led to new devices capable of overlaying digital information onto the physical world or incorporating aspects of the physical world into virtual scenes. These combinations of digital and physical environments are referred to as extended realities. Extended reality (XR) devices offer many advantages for medical applications including realistic 3D visualization and touch-free interfaces that can be used in sterile environments. This review introduces extended reality and describes how it can be applied to medical practice. RECENT FINDINGS: The 3D displays of extended reality devices are valuable in situations where spatial information such as patient anatomy and medical instrument position is important. Applications that take advantage of these 3D capabilities include teaching and pre-operative planning. The utility of extended reality during interventional procedures has been demonstrated with through 3D visualizations of patient anatomy, scar visualization, and real-time catheter tracking with touch-free software control. Extended reality devices have been applied to education, pre-procedural planning, and cardiac interventions. These devices excel in settings where traditional devices are difficult to use, such as in the cardiac catheterization lab. New applications of extended reality in cardiology will continue to emerge as the technology improves.

SELECTION OF CITATIONS
SEARCH DETAIL
...