Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Histochem ; 121(2): 218-226, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30595391

ABSTRACT

Dystrophins (Dps) are the sub-membranous proteins that work via the dystrophin-associated proteins complex, which comprises ß-dystroglycan (ß-DG), a cell surface receptor for extracellular matrix. Recently, we have revealed ß-DG decrease and central function impairment of supraoptic nucleus (SON) in Dp71 deficient adult mice, opening the question on the profiles of Dps and ß-DG during SON development. At birth and the age of 10, 20 and 60 days, we examined the expression by RT-PCR and Western-blotting, and the distribution by immunohistochemistry of Dps and ß-DG. Also, we analyzed, by immunohistochemistry and Western-blotting, the neuropeptide, arginine vasopressin (AVP), in the SON at the different ages. At birth, Dp71 and to a lesser extends, Dp140 and Dp427, and also ß-DG are revealed in the SON. They are localized in the magnocellular neurons (MCNs), astrocytes and vessels. From birth to adulthood, the AVP raise in the SON coincides with the progressive increase of Dp71 level while the level of Dp140 and Dp427 increased only at D20, D10 post-natal development, respectively, and ß-DG expression did not change. Moreover, the location of Dps or/and ß-DG in the cell compartments was modified during development: at D10, Dps appeared in the astrocytes end-feet surrounding MCNs, and at D20, Dps and ß-DG codistributed in the astrocytes end-feet, surrounding MCNs and vessels. Such a distribution marks the first steps of post-natal SON development and may be considered essential in the establishment of structural plasticity mechanisms in SON, where astrocyte end-feet, vessels, magnocellular neurons, are physiologically associated. The disappearance of ß-DG in the MCNs nucleus marks the adulthood SON and suggests that the complex of Dps associating ß-DG is required for the nucleoskeleton function in the post-natal development.


Subject(s)
Arginine Vasopressin/metabolism , Dystroglycans/metabolism , Dystrophin/metabolism , Supraoptic Nucleus/metabolism , Animals , Animals, Newborn , Astrocytes/metabolism , Immunohistochemistry/methods , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Rats, Wistar
2.
Acta Histochem ; 120(3): 187-195, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29395317

ABSTRACT

Dystrophin (Dp) is a multidomain protein that links the actin cytoskeleton to the extracellular matrix through the dystrophin associated proteins complex (DAPC). Dp of 71 kDa (Dp71), corresponding to the COOH-terminal domain of dystrophin, and α1-syntrophin (α1Syn) as the principal component of the DAPC, are strongly expressed in the brain. To clarify their involvement in the central control of osmotic homeostasis, we investigated the effect of 14 days of salt loading (with drinking water containing 2% NaCl) and then reversibly to 30 days of normal hydration (with drinking water without salt), first on the expression by western-blotting and the distribution by immunochemistry of Dp71 and α1Syn in the SON of the rat and, second, on the level of some physiological parameters, as the plasma osmolality, natremia and hematocrit. Dp71 is the most abundant form of dystrophin revealed in the supraoptic nucleu (SON) of control rat. Dp71 was localized in magnocellular neurons (MCNs) and astrocytes, when α1Syn was observed essentially in astrocytes end feet. After 14 days of salt-loading, Dp71 and α1Syn signals decreased and a dual signal for these two proteins was revealed in the astrocytes processes SON surrounding blood capillaries. In addition, salt loading leads to an increase in plasma osmolality, natremia and hematocrit. Reversibly, after 30 days of normal hydration, the intensity of the signal for the two proteins, Dp71 and α1Syn, increased and approached that of control. Furtheremore, the levels of the physiological parameters decreased and approximated those of control. This suggests that Dp71 and α1Syn may be involved in the functional activity of the SON. Their localization in astrocyte end feet emphasizes their importance in neuronal-vascular-astrocyte interactions for the central detection of osmolality. In the SON, Dp71 and α1Syn may be involved in osmosensitivity.


Subject(s)
Calcium-Binding Proteins/pharmacology , Dystrophin/pharmacology , Membrane Proteins/pharmacology , Muscle Proteins/pharmacology , Supraoptic Nucleus/drug effects , Water/chemistry , Animals , Astrocytes/chemistry , Calcium-Binding Proteins/chemistry , Dystrophin/chemistry , Electrophoresis , Immunoblotting , Membrane Proteins/chemistry , Muscle Proteins/chemistry , Organism Hydration Status , Rats , Rats, Wistar , Reference Standards , Sodium Chloride/chemistry , Supraoptic Nucleus/chemistry , Vasopressins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...