Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Zool ; 11(1): 2-15, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26458501

ABSTRACT

Although considerable conservation resources have been committed to develop and use law enforcement monitoring and management tools such as SMART, measures of success are ill-defined and, to date, few reports detail results post-implementation. Here, we present 4 case studies from protected areas with Amur tigers (Panthera tigris altaica) in Russia, in which indicators of success were defined and evaluated at each. The ultimate goal was an increase in tiger numbers to 1 individual/100 km(2) at each site. We predicted that improvements in law enforcement effectiveness would be followed by increases in prey numbers and, subsequently, tiger numbers. We used short-term and long-term indicators of success, including: (i) patrol team effort and effectiveness; (ii) catch per unit effort indicators (to measure reductions in threats); and (iii) changes in target species numbers. In addition to implementing a monitoring system, we focused on improving law enforcement management using an adaptive management process. Over 4 years, we noted clear increases in patrol effort and a partial reduction in threats. Although we did not detect clear trends in ungulate numbers, tiger populations remained stable or increased, suggesting that poaching of tigers may be more limiting than prey depletion. Increased effectiveness is needed before a clear reduction in threats can be noted, and more time is needed before detecting responses in target populations. Nonetheless, delineation of concrete goals and indicators of success provide a means of evaluating progress and weaknesses. Such monitoring should be a central component of law enforcement strategies for protected areas.


Subject(s)
Conservation of Natural Resources/methods , Law Enforcement/methods , Tigers , Animals , Artiodactyla , Endangered Species , Predatory Behavior , Russia
2.
Integr Zool ; 10(4): 315-28, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26037543

ABSTRACT

In 2010, the world's tiger (Panthera tigris) range countries agreed to the goal of doubling tiger numbers over 12 years, but whether such an increase is biologically feasible has not been assessed. Long-term monitoring of tigers in Sikhote-Alin Biosphere Zapovednik (SABZ), Russia provided an opportunity to determine growth rates of a recovering population. A 41-year growth phase was followed by a rapid decline in tiger numbers. Annual growth rates during the growth phase averaged 4.6%, beginning near 10% in the earliest years but quickly dropping below 5%. Sex ratio (females per male) mirrored growth rates, declining as population size increased. The rapid decline from 2009 to 2012 appeared to be tied to multiple factors, including poaching, severe winters and disease. Reproductive indicators of this population are similar to those of Bengal tiger populations, suggesting that growth rates may be similar. These results suggest that, first, tiger populations likely in general grow slowly: 3-5% yearly increases are realistic and larger growth rates are likely only when populations are highly depressed, mortality rates are low and prey populations are high relative to numbers of adult females. Second, while more research is needed, it should not be assumed that tiger populations with high prey densities will necessarily grow more quickly than populations with low prey densities. Third, while growth is slow, decline can be rapid. Fourth, because declines can happen so quickly, there is a constant need to monitor populations and be ready to respond with appropriate and timely conservation interventions if tiger populations are to remain secure. Finally, an average annual growth rate across all tiger populations of 6%, required to reach the Global Tiger Initiative's goal of doubling tiger numbers in 12 years, is a noble but unlikely scenario.


Subject(s)
Conservation of Natural Resources , Tigers , Animals , Female , Male , Population Density , Population Dynamics , Predatory Behavior , Reproduction , Sex Ratio , Siberia
3.
Integr Zool ; 10(4): 403-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26096458

ABSTRACT

Anthropogenic impacts are the primary threats to Amur tigers (Panthera tigris altaica) and their habitat. Villagers living in proximity to tigers tend to view them negatively and, often, as a source of revenue on black markets. We aim to reduce human-tiger conflict by working with young students of Ternei County in the heart of tiger habitat in Primorskii Krai (Province). To inform and influence Ternei County's future decision-makers, we developed "Safe Conduct", a year-long education program held in 6 villages, culminating in a multi-school conference. We tested the efficacy of Safe Conduct as a potential model for tiger conservation educational programs. We measured levels of student knowledge about tiger ecology, their attitude towards tigers, and their willingness to engage in tiger conservation activites prior to, immediately after and 6 months following the completion of our program. Results supported the fundamental premise of Safe Conduct that knowledge and attitude towards tigers are correlated. Knowledge of tiger ecology and attitude towards tigers increased by the project's completion; both remained high after 6 months. However, commitment to participation in conservation efforts rose temporarily post-program and then dropped. Results varied by village. We recommend that the reasons for the high performance measures of students in 2 villages be investigated, and that lessons learned be applied to villages that underperformed. Safe Conduct represents a potential model for environmental education programs in Ternei County and elsewhere to educate future generations, to eventually develop a strong commitment to Amur tiger conservation at the community level.


Subject(s)
Attitude , Conservation of Natural Resources , Education, Nonprofessional , Tigers , Adolescent , Animals , Awareness , Child , Ecosystem , Female , Humans , Male , Pilot Projects , Program Evaluation , Rural Population , Schools , Siberia
4.
Integr Zool ; 10(4): 329-43, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25939829

ABSTRACT

Canine distemper virus (CDV) has recently been identified in populations of wild tigers in Russia and India. Tiger populations are generally too small to maintain CDV for long periods, but are at risk of infections arising from more abundant susceptible hosts that constitute a reservoir of infection. Because CDV is an additive mortality factor, it could represent a significant threat to small, isolated tiger populations. In Russia, CDV was associated with the deaths of tigers in 2004 and 2010, and was coincident with a localized decline of tigers in Sikhote-Alin Biosphere Zapovednik (from 25 tigers in 2008 to 9 in 2012). Habitat continuity with surrounding areas likely played an important role in promoting an ongoing recovery. We recommend steps be taken to assess the presence and the impact of CDV in all tiger range states, but should not detract focus away from the primary threats to tigers, which include habitat loss and fragmentation, poaching and retaliatory killing. Research priorities include: (i) recognition and diagnosis of clinical cases of CDV in tigers when they occur; and (ii) collection of baseline data on the health of wild tigers. CDV infection of individual tigers need not imply a conservation threat, and modeling should complement disease surveillance and targeted research to assess the potential impact to tiger populations across the range of ecosystems, population densities and climate extremes occupied by tigers. Describing the role of domestic and wild carnivores as contributors to a local CDV reservoir is an important precursor to considering control measures.


Subject(s)
Distemper Virus, Canine/physiology , Distemper/epidemiology , Tigers/virology , Animals , Conservation of Natural Resources , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Distemper/mortality , Distemper/transmission , Population Dynamics , Russia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...