Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Basic Microbiol ; 64(2): e2300444, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38051942

ABSTRACT

The aim of this study was to investigate the production, stability and applicability of colorants produced by filamentous fungi isolated from soil samples from the Amazon. Initially, the isolates were evaluated in a screening for the production of colorants. The influences of cultivation and nutritional conditions on the production of colorants by fungal isolates were investigated. The colorants produced by selected fungal isolates were chemically characterized using the Liquid Chromatography-Mass Spectrometry technique. The antimicrobial and cytotoxic activities, stability evaluation and applicability of the colorants were investigated. As results, we observed that the isolates Penicillium sclerotiorum P3SO224, Clonostachys rosea P2SO329 and Penicillium gravinicasei P3SO332 stood out since they produced the most intense colorants. Compounds produced by Penicillium sclerotiorum P3SO224 and Clonostachys rosea P2SO329 were identified as sclerotiorin and penicillic acid. The colorant fraction (EtOAc) produced by these species has antimicrobial activity, stability at temperature and at different pHs, stability when exposure to light and UV, and when exposed to different concentrations of salts, as well as being nontoxic and having the ability to dye fabrics and be used as a pigment in creams and soap. Considering the results found in this study, it was concluded that fungi from the soil in the Amazon have the potential to produce colorants with applications in the textile and pharmaceutical industries.


Subject(s)
Anti-Infective Agents , Hypocreales , Penicillium , Pigments, Biological/chemistry , Fungi/chemistry , Soil
2.
Mycologia ; 114(5): 868-886, 2022.
Article in English | MEDLINE | ID: mdl-35913839

ABSTRACT

The genus Cerradoa (type species Cerradoa palmaea) was established in 1978 by Hennen and Ono and named after the Brazilian Cerrado biome. The holotype collected in Planaltina, Federal District, Brazil, belonged to the first rust fungus reported on palms (Arecaceae). For decades, the status of Cerradoa as a distinct genus has been regarded as doubtful, representing a synonym of Edythea (Uropyxidaceae) starting with the second edition of the Illustrated Genera of Rust Fungi in 1983. Our molecular phylogenetic analyses, as well as our morphological investigations, allowed us to reject this synonymy, leading to the reinstatement of Cerradoa within the Pucciniaceae. Cerradoa, together with morphologically similar genera such as the newly established Pseudocerradoa with two species (Ps. paullula and Ps. rhaphidophorae) infecting araceous hosts, the fern rust Desmella, and also P. engleriana, could not be assigned to any of the seven identified major lineages within the Pucciniaceae. Edythea, instead of being maintained as a member of the Uropyxidaceae, was herein placed in Pucciniaceae, shown phylogenetically in close relationship to Cumminsiella mirabilissima, both infecting the Berberidaceae. Additionally, our extensive phylogenetic analyses add guidance for future taxonomic revisions in the highly polyphyletic genus Puccinia and other established taxa within the family Pucciniaceae.


Subject(s)
Phylogeny , Brazil
3.
IMA Fungus ; 6(1): 155-62, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26203421

ABSTRACT

The sexual morph of Aecidium goyazense collected in the Brazilian Cerrado was morphologically characterized by light microscopy and SEM, and shown to be a species of Uromyces, for which the name Uromyces hawksworthii nom. nov. is introduced, and designated as its epitype. This is the second Uromyces species known to infect the tropical genus Phthirusa (Loranthaceae). DNA sequences were generated from the ITS and 28S rRNA (LSU) regions of DNA recovered from aeciospores as well as teliospores. This fungus is compared with other Uromyces species known from Loranthaceae.

SELECTION OF CITATIONS
SEARCH DETAIL
...