Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(9)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37175599

ABSTRACT

The Na+-activated Na+ channel (Nax) and salt-inducible kinase (SIK) are stimulated by increases in local Na+ concentration, affecting (Na+ + K+)-ATPase activity. To test the hypothesis that the triad Nax/SIK/(Na+ + K+)-ATPase contributes to kidney injury and salt-sensitive hypertension (HTN), uninephrectomized male Wistar rats (200 g; n = 20) were randomly divided into 4 groups based on a salt diet (normal salt diet; NSD-0.5% NaCl-or high-salt diet; HSD-4% NaCl) and subcutaneous administration of saline (0.9% NaCl) or deoxycorticosterone acetate (DOCA, 8 mg/kg), as follows: Control (CTRL), CTRL-Salt, DOCA, and DOCA-Salt, respectively. After 28 days, the following were measured: kidney function, blood pressure, (Na+ + K+)-ATPase and SIK1 kidney activities, and Nax and SIK1 renal expression levels. SIK isoforms in kidneys of CTRL rats were present in the glomerulus and tubular epithelia; they were not altered by HSD and/or HTN. CTRL-Salt rats remained normotensive but presented slight kidney function decay. HSD rats displayed augmentation of the Nax/SIK/(Na+ + K+)-ATPase pathway. HTN, kidney injury, and kidney function decay were present in all DOCA rats; these were aggravated by HSD. DOCA rats presented unaltered (Na+ + K+)-ATPase activity, diminished total SIK activity, and augmented SIK1 and Nax content in the kidney cortex. DOCA-Salt rats expressed SIK1 activity and downregulation in (Na+ + K+)-ATPase activity in the kidney cortex despite augmented Nax content. The data of this study indicate that the (Na+ + K+)-ATPase activity response to SIK is attenuated in rats under HSD, independent of HTN, as a mechanism contributing to kidney injury and salt-sensitive HTN.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Rats , Male , Animals , Sodium Chloride/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Rats, Wistar , Hypertension/metabolism , Sodium/metabolism , Sodium Chloride, Dietary/adverse effects , Sodium Chloride, Dietary/metabolism , Blood Pressure , Kidney/metabolism , Ions/metabolism , Protein Serine-Threonine Kinases/metabolism
2.
Physiol Rep ; 3(10)2015 Oct.
Article in English | MEDLINE | ID: mdl-26508737

ABSTRACT

Epidemiological and animal studies have shown that placental undernutrition impairs reproduction in adult offspring, but the underlying molecular mechanisms within the male genital tract remain unknown. Due to its special physiological characteristics in transport and the modulation of the environment to which its luminal content is exposed, we hypothesized that the vas deferens would be a highly sensitive target. The goals were to investigate whether intrauterine malnutrition affects molecular mechanisms related to Ca(2+)- and oxidative stress-modulated processes and causes structural alterations in the adult rat vas deferens that could attenuate fecundity and fertility. Male adult rats malnourished in utero had increased vas deferens weight associated with thickening of the muscular coat, a decrease in the total and haploid germ cells, a marked increase in the immature cells, and a decline in the numbers of pregnant females and total offspring per male rat. The ex vivo response of vas deferens from malnourished rats demonstrated an accentuated decrease in the contractile response to phenylephrine. The vas deferens had a marked decrease in Ca(2+) transport due to the uncoupling of Ca(2+)-stimulated ATP hydrolysis and ATP-driven Ca(2+) flux, and the downregulation of both sarco-endoplasmic reticulum Ca(2+)-ATPase 2 and the coupling factor 12-kDa FK506-binding protein. An increase in protein carbonylation (a marker of oxidative damage) and an imbalance between protein kinases C and A were observed as a legacy of undernutrition in early life. These results provide the structural and molecular basis to explain at least in part how maternal undernutrition affects fecundity and fertility in adult male rats.

3.
PLoS One ; 8(7): e69682, 2013.
Article in English | MEDLINE | ID: mdl-23922775

ABSTRACT

BACKGROUND: The aim of this work was to investigate the mechanisms by which chronic malnutrition (CM) affects vas deferens function, leading to compromised reproductive capacity. Previous studies have shown that maternal malnutrition affects the reproductive tracts of adult male offspring. However, little is known about the effects of CM, a widespread life-long condition that persists from conception throughout growth to adult life. METHODOLOGY/PRINCIPAL FINDINGS: Young adult male rats, which were chronically malnourished from weaning, presented decreased total and haploid cells in the vas deferens, hypertrophy of the muscle layer in the epididymal portion of the vas deferens and intense atrophy of the muscular coat in its prostatic portion. At a molecular level, the vas deferens tissue of CM rats exhibited a huge rise in lipid peroxidation and protein carbonylation, evidence of an accentuated increase in local reactive oxygen species levels. The kinetics of plasma membrane Ca(2+)-ATPase activity and its kinase-mediated phosphorylation by PKA and PKC in the vas deferens revealed malnutrition-induced modifications in velocity, Ca(2+) affinity and regulation of Ca(2+) handling proteins. The severely crippled content of the 12-kDa FK506 binding protein, which controls passive Ca(2+) release from the sarco(endo) plasmic reticulum, revealed another target of malnutrition related to intracellular Ca(2+) handling, with a potential effect on forward propulsion of sperm cells. As a possible compensatory response, malnutrition led to enhanced sarco(endo) plasmic reticulum Ca(2+)-ATPase activity, possibly caused by stimulatory PKA-mediated phosphorylation. CONCLUSIONS/SIGNIFICANCE: The functional correlates of these cellular and molecular hallmarks of chronic malnutrition on the vas deferens were an accentuated reduction in fertility and fecundity.


Subject(s)
Calcium Signaling , Calcium/metabolism , Malnutrition/pathology , Oxidative Stress , Reproduction , Vas Deferens/metabolism , Vas Deferens/pathology , Aging/pathology , Animals , Biological Transport , Body Weight , Calcium-Transporting ATPases/metabolism , Cell Count , Cell Survival , Chronic Disease , Epididymis/pathology , Haploidy , Kinetics , Male , Malnutrition/enzymology , Muscles/pathology , Organ Size , Oxidation-Reduction , Phosphorylation , Rats , Rats, Wistar , Spermatozoa/pathology , Testis/pathology , Vas Deferens/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...