Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
JACC Cardiovasc Imaging ; 17(2): 179-191, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37768241

ABSTRACT

BACKGROUND: Body mass index (BMI) is a controversial marker of cardiovascular prognosis, especially in women. Coronary microvascular dysfunction (CMD) is prevalent in obese patients and a better discriminator of risk than BMI, but its association with body composition is unknown. OBJECTIVES: The authors used a deep learning model for body composition analysis to investigate the relationship between CMD, skeletal muscle (SM), subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT), and their contribution to adverse outcomes in patients referred for evaluation of coronary artery disease. METHODS: Consecutive patients (n = 400) with normal perfusion and preserved left ventricular ejection fraction on cardiac stress positron emission tomography were followed (median, 6.0 years) for major adverse events, including death and hospitalization for myocardial infarction or heart failure. Coronary flow reserve (CFR) was quantified as stress/rest myocardial blood flow from positron emission tomography. SM, SAT, and VAT cross-sectional areas were extracted from abdominal computed tomography at the third lumbar vertebra using a validated automated algorithm. RESULTS: Median age was 63, 71% were female, 50% non-White, and 50% obese. Compared with the nonobese, patients with obesity (BMI: 30.0-68.4 kg/m2) had higher SAT, VAT, and SM, and lower CFR (all P < 0.001). In adjusted analyses, decreased SM but not increased SAT or VAT was significantly associated with CMD (CFR <2; OR: 1.38; 95% CI: 1.08-1.75 per -10 cm2/m2 SM index; P < 0.01). Both lower CFR and SM, but not higher SAT or VAT, were independently associated with adverse events (HR: 1.83; 95% CI: 1.25-2.68 per -1 U CFR and HR: 1.53; 95% CI: 1.20-1.96 per -10 cm2/m2 SM index, respectively; P < 0.002 for both), especially heart failure hospitalization (HR: 2.36; 95% CI: 1.31-4.24 per -1 U CFR and HR: 1.87; 95% CI: 1.30-2.69 per -10 cm2/m2 SM index; P < 0.004 for both). There was a significant interaction between CFR and SM (adjusted P = 0.026), such that patients with CMD and sarcopenia demonstrated the highest rate of adverse events, especially among young, female, and obese patients (all P < 0.005). CONCLUSIONS: In a predominantly female cohort of patients without flow-limiting coronary artery disease, deficient muscularity, not excess adiposity, was independently associated with CMD and future adverse outcomes, especially heart failure. In patients with suspected ischemia and no obstructive coronary artery disease, characterization of lean body mass and coronary microvascular function may help to distinguish obese phenotypes at risk for cardiovascular events.


Subject(s)
Coronary Artery Disease , Heart Failure , Humans , Female , Middle Aged , Male , Coronary Artery Disease/diagnostic imaging , Stroke Volume , Risk Factors , Ventricular Function, Left , Predictive Value of Tests , Heart Failure/diagnostic imaging , Heart Failure/epidemiology , Obesity/complications , Obesity/diagnosis , Obesity/epidemiology
2.
Circ Cardiovasc Imaging ; 15(6): e013987, 2022 06.
Article in English | MEDLINE | ID: mdl-35674051

ABSTRACT

BACKGROUND: Single photon emission computed tomography (SPECT) has limited ability to identify multivessel and microvascular coronary artery disease. Gamma cameras with cadmium zinc telluride detectors allow the quantification of absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR). However, evidence of its accuracy is limited, and of its reproducibility is lacking. We aimed to validate 99mTc-sestamibi SPECT MBF and MFR using standard and spline-fitted reconstruction algorithms compared with 13N-ammonia positron emission tomography in a cohort of patients with known or suspected coronary artery disease and to evaluate the reproducibility of this technique. METHODS: Accuracy was assessed in 34 participants who underwent dynamic 99mTc-sestamibi SPECT and 13N-ammonia positron emission tomography and reproducibility in 14 participants who underwent 2 99mTc-sestamibi SPECT studies, all within 2 weeks. A rest/pharmacological stress single-day SPECT protocol was performed. SPECT images were reconstructed using a standard ordered subset expectation maximization (OSEM) algorithm with (N=21) and without (N=30) application of spline fitting. SPECT MBF was quantified using a net retention kinetic model' and MFR was derived as the stress/rest MBF ratio. RESULTS: SPECT global MBF with splines showed good correlation with 13N-ammonia positron emission tomography (r=0.81, P<0.001) and MFR estimates (r=0.74, P<0.001). Correlations were substantially weaker for standard reconstruction without splines (r=0.61, P<0.001 and r=0.34, P=0.07, for MBF and MFR, respectively). Reproducibility of global MBF estimates with splines in paired SPECT scans was good (r=0.77, P<0.001), while ordered subset expectation maximization without splines led to decreased MBF (r=0.68, P<0.001) and MFR correlations (r=0.33, P=0.3). There were no significant differences in MBF or MFR between the 2 reproducibility scans independently of the reconstruction algorithm (P>0.05 for all). CONCLUSIONS: MBF and MFR quantification using 99mTc-sestamibi cadmium zinc telluride SPECT with spatiotemporal spline fitting improved the correlation with 13N-ammonia positron emission tomography flow estimates and test/retest reproducibility. The use of splines may represent an important step toward the standardization of SPECT flow estimation.


Subject(s)
Coronary Artery Disease , Myocardial Perfusion Imaging , Ammonia , Cadmium , Coronary Artery Disease/diagnostic imaging , Coronary Circulation , Humans , Myocardial Perfusion Imaging/methods , Positron-Emission Tomography/methods , Reproducibility of Results , Technetium Tc 99m Sestamibi , Tomography, Emission-Computed, Single-Photon/methods , Zinc
3.
Circ Res ; 130(4): 529-551, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35175840

ABSTRACT

Ischemic heart disease (IHD) is the leading cause of mortality in women. While traditional cardiovascular risk factors play an important role in the development of IHD in women, women may experience sex-specific IHD risk factors and pathophysiology, and thus female-specific risk stratification is needed for IHD prevention, diagnosis, and treatment. Emerging data from the past 2 decades have significantly improved the understanding of IHD in women, including mechanisms of ischemia with no obstructive coronary arteries and myocardial infarction with no obstructive coronary arteries. Despite this progress, sex differences in IHD outcomes persist, particularly in young women. This review highlights the contemporary understanding of coronary arterial function and disease in women with no obstructive coronary arteries, including coronary anatomy and physiology, mechanisms of ischemia with no obstructive coronary arteries and myocardial infarction with no obstructive coronary arteries, noninvasive and invasive diagnostic strategies, and management of IHD.


Subject(s)
Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/physiopathology , Coronary Circulation/physiology , Coronary Vessels/diagnostic imaging , Coronary Vessels/physiology , Adrenergic beta-Antagonists/therapeutic use , Coronary Angiography/methods , Coronary Artery Disease/therapy , Female , Humans , Risk Reduction Behavior
4.
J Nucl Cardiol ; 28(5): 2056-2066, 2021 10.
Article in English | MEDLINE | ID: mdl-31792916

ABSTRACT

BACKGROUND: The prognostic value of myocardial perfusion imaging (MPI) in patients with known coronary artery disease (CAD) and high exercise capacity is still unknown. We sought to determine the MPI additional prognostic value over electrocardiography (ECG) stress testing alone in patients with known CAD who achieved ≥ 10 metabolic equivalents (METs). METHODS AND RESULTS: We evaluated 926 patients with known CAD referred for MPI with exercise stress. Patients were followed for a mean of 32.4 ± 9.7 months for the occurrence of all-cause death or nonfatal myocardial infarction (MI). Those achieving ≥ 10 METs were younger, predominantly male, and had lower prevalence of cardiovascular risk factors. Patients reaching ≥ 10 METs had a lower annualized rate of hard events compared to their counterparts achieving < 10 METs (1.13%/year vs 3.95%/year, P < .001). Patients who achieved ≥ 10 METs with abnormal scans had a higher rate of hard events compared to those with normal scans (3.37%/year vs 0.57%/year, P = .023). Cardiac workload < 10 METs and an abnormal MPI scan were independent predictors of hard events. CONCLUSIONS: MPI is able to stratify patients with known CAD achieving ≥ 10 METs for the occurrence of all-cause death and nonfatal MI, with incremental prognostic value over ECG stress test alone.


Subject(s)
Coronary Artery Disease/diagnostic imaging , Exercise Tolerance/physiology , Predictive Value of Tests , Single Photon Emission Computed Tomography Computed Tomography/standards , Aged , Brazil/epidemiology , Coronary Artery Disease/diagnosis , Coronary Artery Disease/epidemiology , Electrocardiography/methods , Electrocardiography/statistics & numerical data , Female , Humans , Male , Middle Aged , Myocardial Perfusion Imaging/methods , Myocardial Perfusion Imaging/standards , Myocardial Perfusion Imaging/statistics & numerical data , Prognosis , Risk Factors , Single Photon Emission Computed Tomography Computed Tomography/instrumentation , Single Photon Emission Computed Tomography Computed Tomography/methods
5.
J Nucl Cardiol ; 28(3): 876-884, 2021 Jun.
Article in English | MEDLINE | ID: mdl-31222529

ABSTRACT

BACKGROUND: Previous studies have suggested using gamma cameras with cadmium-zinc-telluride (CZT) detectors to quantify myocardial blood flow (MBF) and flow reserve (MFR). In this study, we aimed to evaluate the feasibility and accuracy of MFR quantification using a CZT camera compared to coronary angiography. METHODS: Forty-one participants referred for coronary angiography underwent a rest/stress one-day myocardial perfusion imaging protocol using a CZT gamma camera. Rest and stress dynamic phases were followed by acquisition of traditional perfusion images and time-activity curves were generated. Angiographic and perfusion results were compared to MFR. RESULTS: Patients with abnormal perfusion presented reduced MFR (2.01 [1.48-2.77] vs. 2.94 [2.38-3.64], P = 0.002), and reduced stress MBF. Patients with high-risk CAD had lower global MFR compared to patients without obstructive disease (1.99 [1.22-2.84] vs. 2.89 [2.22-3.58], P = 0.026). Obstructed vessels showed lower regional MFR when compared to non-obstructed (1.81 [1.19-2.67] vs. 2.75 [2.13-3.42], P < 0.001). A regional MFR of 2.2 provided a sensitivity of 63.2% and specificity of 74.1% to identify an obstructive lesion in the corresponding artery. CONCLUSION: In patients undergoing invasive coronary angiography for the evaluation of CAD, quantifying MBF and MFR in a CZT gamma camera is feasible and reflects underlying disease. In these patients, reduced regional MFR suggests the presence of obstructive lesion(s).


Subject(s)
Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Fractional Flow Reserve, Myocardial , Aged , Algorithms , Angiography , Animals , Cadmium , Female , Gamma Cameras , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Myocardial Perfusion Imaging/methods , Perfusion , Prospective Studies , ROC Curve , Reproducibility of Results , Risk , Sensitivity and Specificity , Tellurium , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL
...