Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 40(14): 6330-6339, 2022 09.
Article in English | MEDLINE | ID: mdl-33554764

ABSTRACT

Functional annotation of Trametes villosa genome was performed to search Class II peroxidase proteins in this white-rot fungus, which can be valuable for several biotechnological processes. After sequence identification and manual curation, five proteins were selected to build 3 D models by comparative modeling. Analysis of sequential and structural sequences from selected targets revealed the presence of two putative Lignin Peroxidase and three putative Manganese Peroxidase on this fungal genome. All 3 D models had a similar folding pattern from selected 3 D structure templates. After minimization and validation steps, the best 3 D models were subjected to docking studies and molecular dynamics to identify structural requirements and the interactions required for molecular recognition. Two reliable 3 D models of Class II peroxidases, with typical catalytic site and architecture, and its protein sequences are indicated to recombinant production in biotechnological applications, such as bioenergy.Communicated by Ramaswamy H. Sarma.


Subject(s)
Polyporaceae , Trametes , Coloring Agents , Lignin/chemistry , Lignin/metabolism , Peroxidase , Peroxidases/metabolism , Polyporaceae/metabolism , Trametes/genetics , Trametes/metabolism
2.
J Biomol Struct Dyn ; 39(18): 7000-7016, 2021 11.
Article in English | MEDLINE | ID: mdl-32794433

ABSTRACT

The visceral form of Leishmaniasis, also known as kala-azar, caused by Leishmania chagasi is the main etiological agent of this form in Brazil responsible for 30,000 annual deaths. Despite its epidemiological impact, treatment of the disease is limited by resistance, species-dependent efficacy and serious adverse effects. The application of computational tools to prioritize potential bioactive molecules based on 3D structural of biological target is a viable alternative. Among the L. chagasi validated targets, Fe + 2 superoxide dismutase B2 (LcFeSODB2) is the first parasite enzyme against oxidative stress and it is involved in essential metabolic processes for its survival. Due to substrate binding-site volume (superoxide ion) and consequent difficulty in its active site modulation for small molecules, the search for allosteric sites at LcFeSODB2 3D structure is a promising strategy. As there are no 3D structures of LcFeSODB2, comparative modeling was applied to build 3D models by SWISS-MODEL and MODELLER version 9.19. Next, the best 3D model was used in molecular dynamics (MD) routines with multiple probes on GROMACS version 5.1.2. In addition, potential allosteric sites predicted by FTMap and Metapocket web servers were used with probe occupancy maps from MD to select an allosteric binding site and propose a pharmacophore model. Next, it was used as a template in virtual screening by UNITY® module available on SYBYL-X version 2.1.1 at Sigma-Aldrich CPR™ subset of ZINC12 database. The pharmacophore-based virtual screening resulted in the selection of two potential allosteric LcFeSOD compounds with partial pharmacophoric requirements, drug-like properties and commercial availability for enzymatic assays. Communicated by Ramaswamy H. Sarma.


Subject(s)
Leishmania infantum , Molecular Dynamics Simulation , Superoxide Dismutase/antagonists & inhibitors , Allosteric Site , Leishmania infantum/enzymology , Molecular Docking Simulation , Quantitative Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...