Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Nutr Food Res ; 65(10): e2000943, 2021 05.
Article in English | MEDLINE | ID: mdl-33650755

ABSTRACT

SCOPE: Coconut oil (CO) diets remain controversial due to the possible association with metabolic disorder and obesity. This study investigates the metabolic effects of a low amount of CO supplementation. METHODS AND RESULTS: Swiss male mice are assigned to be supplemented orally during 8 weeks with 300 µL of water for the control group (CV), 100 or 300 µL of CO (CO100 and CO300) and 100 or 300 µL of soybean oil (SO; SO100 and SO300). CO led to anxious behavior, increase in body weight gain, and adiposity. In the hypothalamus, CO and SO increase cytokines expression and pJNK, pNFKB, and TLR4 levels. Nevertheless, the adipose tissue presented increases macrophage infiltration, TNF-α and IL-6 after CO and SO consumption. IL-1B and CCL2 expression, pJNK and pNFKB levels increase only in CO300. In the hepatic tissue, CO increases TNF-α and chemokines expression. Neuronal cell line (mHypoA-2/29) exposed to serum from CO and SO mice shows increased NFKB migration to the nucleus, TNF-α, and NFKBia expression, but are prevented by inhibitor of TLR4 (TAK-242). CONCLUSIONS: These results show that a low-dose CO changes the behavioral pattern, induces inflammatory pathway activation, TLR4 expression in healthy mice, and stimulates the pro-inflammatory response through a TLR4-mediated mechanism.


Subject(s)
Behavior, Animal/drug effects , Coconut Oil/administration & dosage , Coconut Oil/adverse effects , Hypothalamic Diseases/chemically induced , Inflammation/chemically induced , Metabolic Diseases/chemically induced , Adiposity/drug effects , Animals , Blood Glucose/analysis , Dietary Supplements , Male , Mice , Motor Activity/drug effects , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/physiology , Weight Gain/drug effects
2.
Cell Physiol Biochem ; 53(4): 701-712, 2019.
Article in English | MEDLINE | ID: mdl-31592599

ABSTRACT

BACKGROUND/AIMS: Cholinergic signalling mediated by the activation of muscarinic and nicotinic receptors has been described in the literature as a classic and important signalling pathway in the regulation of the inflammatory response. Recent research has investigated the role of acetylcholine, the physiological agonist of these receptors, in the control of energy homeostasis at the central level. Studies have shown that mice that do not express acetylcholine in brain regions regulating energy homeostasis present with excessive weight gain and hyperphagia. However, it has not yet been well-described in the literature which cholinergic receptor subunits are involved in this response; moreover, the signalling pathways responsible for the observed effects are not fully delineated. The hypothalamus is the regulating centre of energy homeostasis, and the α7 subunit of the nicotinic acetylcholine receptor (α7nAChR) is highly expressed in this region. When active, α7nAChR recruits proteins such as JAK2/STAT3 to mediate its signalling; the same intracellular components are required by leptin, an anorexigenic hormone. The aim of the present study was to evaluate the role of the hypothalamic α7nAChR in the control of energy homeostasis. METHODS: The work was performed on Swiss male mice. Initially, using immunofluorescent staining on brain sections, the presence of α7nAChR in hypothalamic cells regulating energy homeostasis was evaluated. Animals were submitted to stereotaxis in the lateral ventricle and intracerebroventricular stimulation (ICV) was used for the administration of an agonist (PNU) or antagonist (α-bungarotoxin) of α7nAChR. Metabolic parameters were evaluated and the expression of neuropeptides was evaluated in the hypothalamus by real-time PCR and western blot. The expression of hypothalamic neuropeptides was evaluated in mice treated with siRNA or inhibitors of JAK2/STAT3 (AG490 and STATTIC) proteins. We also evaluated food intake in α7nAChR knockout animals (α7KO). Additionally, in mouse hypothalamic cell culture (the mypHoA-POMC/GFP lineage), we evaluated the expression of neuropeptides and pSTAT3 after stimulation with PNU. RESULTS: Our results indicate co-localisation of α7nAChR with α-MSH, AgRP and NPY in hypothalamic cells. Pharmacological activation of α7nAChR reduced food intake and increased hypothalamic POMC expression and decreased NPY and AgRP mRNA levels and the protein content of pAMPK. Inhibition of α7nAChR with an antagonist increased the mRNA content of NPY and AgRP. Inhibition of α7nAChR with siRNA led to the suppression of POMC expression and an increase in AgRP mRNA levels. α7KO mice showed no changes in food intake. Inhibition of proteins involved in the JAK2/STAT3 signalling pathway reversed the effects observed after PNU stimulation. POMC-GFP cells, when treated with PNU, showed increased POMC expression and nuclear translocation of pSTAT3. CONCLUSION: Thus, selective activation of α7nAChR is able to modulate important markers of the response to food intake, suggesting that α7nAChR activation can suppress the expression of orexigenic markers and favour the expression of anorexics using the intracellular JAK2/STAT3 machinery.


Subject(s)
Agouti-Related Protein/metabolism , Janus Kinase 2/metabolism , Pro-Opiomelanocortin/metabolism , STAT3 Transcription Factor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Agouti-Related Protein/genetics , Animals , Benzamides/pharmacology , Bridged Bicyclo Compounds/pharmacology , Bungarotoxins/pharmacology , Cell Line , Eating/drug effects , Energy Metabolism/drug effects , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Pro-Opiomelanocortin/genetics , RNA Interference , RNA, Small Interfering/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/genetics , Signal Transduction/drug effects , alpha7 Nicotinic Acetylcholine Receptor/agonists , alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors , alpha7 Nicotinic Acetylcholine Receptor/genetics
3.
Front Immunol ; 10: 565, 2019.
Article in English | MEDLINE | ID: mdl-30967878

ABSTRACT

Sepsis is one of the leading causes of death in hospitalized patients and the chronic and low-grade inflammation observed in obesity seems to worsen susceptibility and morbidity of infections. However, little is known with respect to a short-term high-fat diet (HFD) and its role in the development of sepsis. Here, we show for the first time, that short-term HFD consumption impairs early nicotinic acetylcholine receptor α7 subunit (α7nAChR)- mediated signaling, one of the major components of the cholinergic anti-inflammatory pathway, with a focus on hypothalamic inflammation and innate immune response. Mice were randomized to a HFD or standard chow (SC) for 3 days, and sepsis was subsequently induced by a lethal intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) or by cecal ligation and puncture (CLP) surgery. In a separate experiment, both groups received LPS (i.p.) or LPS (i.p.) in conjunction with the selective α7nAChR agonist, PNU-282987 (i.p. or intracerebroventricular; i.c.v.), and were sacrificed 2 h after the challenge. Short-term HFD consumption significantly reduced the α7nAChR mRNA and protein levels in the hypothalamus and liver (p < 0.05). Immunofluorescence microscopy demonstrated lower cholinergic receptor nicotinic α7 subunit (α7nAChR)+ cells in the arcuate nucleus (ARC) (α7nAChR+ cells in SC = 216 and HFD = 84) and increased F4/80+ cells in the ARC (2.6-fold) and median eminence (ME) (1.6-fold), which can contribute to neuronal damage. Glial fibrillary acidic protein (GFAP)+ cells and neuronal nuclear antigen (NeuN)+ cells were also increased following consumption of HFD. The HFD-fed mice died quickly after a lethal dose of LPS or following CLP surgery (2-fold compared with SC). The LPS challenge raised most cytokine levels in both groups; however, higher levels of TNF-α (Spleen and liver), IL-1ß and IL-6 (in all tissues evaluated) were observed in HFD-fed mice. Moreover, PNU-282987 administration (i.p. or i.c.v.) reduced the levels of inflammatory markers in the hypothalamus following LPS injection. Nevertheless, when the i.c.v. injection of PNU-282987 was performed the anti-inflammatory effect was much smaller in HFD-fed mice than SC-fed mice. Here, we provide evidence that a short-term HFD impairs early α7nAChR expression in central and peripheral tissues, contributing to a higher probability of death in sepsis.


Subject(s)
Dietary Fats/pharmacology , Gene Expression Regulation , Hypothalamus , Immunity, Innate/drug effects , Sepsis , alpha7 Nicotinic Acetylcholine Receptor , Animals , Disease Models, Animal , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Hypothalamus/immunology , Hypothalamus/metabolism , Hypothalamus/pathology , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Sepsis/immunology , Sepsis/metabolism , Sepsis/pathology , alpha7 Nicotinic Acetylcholine Receptor/biosynthesis , alpha7 Nicotinic Acetylcholine Receptor/immunology
4.
Neuroscience ; 371: 1-15, 2018 02 10.
Article in English | MEDLINE | ID: mdl-29203230

ABSTRACT

Studies show that maternal consumption of a high-fat diet (HFD) can impair the formation of hypothalamic neuronal circuits in mouse offspring. This damage can be mediated by Notch1/Hes5 signaling activation, leading to repression of proneural factors such as Mash1 and Ngn2/3, which are essential for neuronal differentiation and neurogenesis. Thus, we aimed to investigate the effects of maternal HFD consumption during gestation and lactation on the Notch1/Mash1 pathway in the hypothalamus and arcuate nucleus (ARC) of mouse offspring (neonates and 28 days old). Our results showed that maternal HFD consumption increases body weight and adiposity of mouse offspring, accompanied by increased levels of Il-1ß mRNA compared to those in control offspring. We noticed high mRNA levels of Hes5 accompanied by diminished mRNA levels of Ascl1 (Mash1). The number of Mash1-labeled cells in the ARC was diminished in HFD-O. Additionally, the population of NPY neurons was increased in these animals. Mash1 is important for the development of POMC and NPY neurons in the ARC. Therefore, the reduction in Mash1-labeled cells could be related to modification of the NPY neuron population in the ARC. This scenario favors hyperphagia and weight gain, and could be responsible for the development of obesity in adulthood.


Subject(s)
Diet, High-Fat/adverse effects , Eating , Hypothalamus/growth & development , Maternal Nutritional Physiological Phenomena , Neurons/metabolism , Receptor, Notch1/metabolism , Adiposity , Animals , Animals, Newborn , Arcuate Nucleus of Hypothalamus/growth & development , Arcuate Nucleus of Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus/pathology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Body Weight , Eating/physiology , Female , Hypothalamus/metabolism , Hypothalamus/pathology , Interleukin-1beta/metabolism , Male , Mice , Neurons/pathology , Neuropeptide Y/metabolism , RNA, Messenger/metabolism , Random Allocation , Repressor Proteins/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...