Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37297462

ABSTRACT

The use of fruits and their by-products in food has dramatically impacted the food industry due to the nutritional benefits and the technological and sensory effects of food matrices. Therefore, this research aimed to evaluate the effects of adding cupuassu (Theobroma grandiflorum) pulp and flour on fermented milk beverages' physicochemical, microbial, and sensory properties during refrigerated storage (0, 7, 14, 21, and 28 days). Twelve formulations were realized with different percentages of cupuassu pulp (0, 5, 7.5, and 10% w/v) and flour (0, 1.5, and 3% w/v). The treatments with 3% cupuassu flour presented the highest percentages of protein, fat, fiber, and carbohydrates, compared with the samples containing pulp. On the other hand, the addition of pulp increased water retention capacity and color parameters (L*, a*, b*, and C*) and decreased pH and syneresis on day 0 of storage. During storage, the samples with pulp showed increases in pH values, consistency index, and apparent viscosity. In comparison, cupuassu flour addition decreased syneresis values and increased L* and b* during storage, as did pulp. In addition, sample HPHF (10% pulp and 3% cupuassu flour), based on just-about-right, penalty, and check-all-that-apply analyses, improved some sensory attributes of the fermented milk beverage, such as brown color, acid taste, bitter taste, cupuassu flavor, and firm texture. It can be concluded that cupuassu pulp and flour addition improves the physicochemical and sensory quality of fermented milk beverages and can provide nutritional value to the product.

2.
An Acad Bras Cienc ; 94(suppl 3): e20211446, 2022.
Article in English | MEDLINE | ID: mdl-36074429

ABSTRACT

Liqueur is an alcoholic beverage composed of a mixture of water, alcohol, sugar and substances that add flavour and aroma. Wild passion fruit is a product with good agricultural and nutritional characteristics, and is a low-cost, regional fruit that could be used to elaborate new products. The goal of this study was to develop passion fruit (Passiflora cincinnata Mast.) liqueurs and evaluate their chemical, physical and sensory characteristics. 5 formulations were prepared with defined pulp and syrup concentrations (F1, F2, F3, F4 and F5). The following physicochemical parameters were evaluated: alcohol degree (ºGL), density, pH, total titratable acidity, total soluble solids (TSS), reducing and non-reducing sugars and colour parameters. A sensory acceptance test was applied. The formulations F4 and F5, produced with 640g pulp/70ºBrix syrup and 500g pulp/55ºBrix syrup, respectively, showed the highest acceptance scores, probably due to their acid pH, high acidity and soluble solids values. In general, the beverages developed were considered feasible, aimed at aggregating value to a regional fruit and increasing family incomes. The high sensory acceptance indicated market potential for this aggregated value product.


Subject(s)
Passiflora , Alcoholic Beverages , Fruit/chemistry , Odorants/analysis , Passiflora/chemistry , Taste
3.
An Acad Bras Cienc ; 94(4): e20200142, 2022.
Article in English | MEDLINE | ID: mdl-35830066

ABSTRACT

The objective was to develop and characterize biodegradable films with antimicrobial and antioxidant action, using poly(butylene adipate-co-terephthalate) (PBAT) incorporated with OEO - essential oil (Origanum vulgare). The degradation temperature of the OEO increased after incorporation into the PBAT matrix, however, the degradation of the matrix did not undergo considerable changes. The films showed increase in elongation and modulus of elasticity with presence of OEO, however, it reduced the maximum tension. The permeability of the films was reduced with OEO presence. The spectra (FTIR) showed the presence of the functional groups attributed to the bioactive compounds (Carvacrol) of OEO. The films presented high antioxidant activity and effective antimicrobial action, reducing Staphylococcus aureus in 53 days and psychrotrophic microorganisms in up to 28 days of storage. The films showed to be efficient with antioxidant activity and antimicrobial action with indication to be used as packaging of sliced mozzarella cheese.


Subject(s)
Anti-Infective Agents , Cheese , Oils, Volatile , Origanum , Adipates , Alkenes , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Food Packaging , Oils, Volatile/pharmacology , Polyesters/pharmacology
4.
Recent Pat Nanotechnol ; 15(1): 2-14, 2021.
Article in English | MEDLINE | ID: mdl-32628605

ABSTRACT

The search for technological applications for oils has been growing largely due to their potential nutritional and economic applications. Encapsulation makes it possible to reduce the disadvantages of oils, such as physical instability or thermodynamics, or to improve their technological properties, enabling their use in various industrial areas. Nanoencapsulated oils have the potential to improve oil bioavailability and achieve controlled release and are able to target bioactive compounds with greater precision than microencapsulated oils. The present study aims to evaluate the primary characteristics and profiles of the technological prospection of oil nanoparticles. This technology foresight study investigates the patenting activity and the academic literature to map out the technological progress and difficulties in the area of nanoencapsulation. Exponential growth in patent filing was noted with a peak in 2017, with China filing the highest number of patents. Regarding the area of application, the food industry was most common followed by the pharmaceutical industry. The most commonly used terms in patent documents on the subject were nanoemulsion and nanoparticle. The most commonly used oil, technique, wall materials and emulsifiers were soybean oil, emulsification, chitosan and lecithin, and Span 80, Tween 80 and Tween 40, respectively. The obtained articles were typically patent documents. The main depositor was Jiangnan University, and most inventors filed the same number of patent documents. Nanoencapsulation of oils has many known advantages that have been widely published in the literature and used by industry. There is a trend in the growth of patent document deposits and related scientific publications, indicating that many innovations have been made, highlighting the importance of oil nanoencapsulation.

5.
Recent Pat Biotechnol ; 14(2): 112-120, 2020.
Article in English | MEDLINE | ID: mdl-31625481

ABSTRACT

BACKGROUND: The use of enzymes in various industrial processes has become increasingly frequent. When added to productive processes, it can accelerate reactions and generate a number of new products. The solid state fermentation (SSF), among other applications, has been employed also to obtain enzymes. OBJECTIVE: The purpose of this prospection was to map registered patent documents about enzymes production by this type of fermentation in the world, identify the most obtained enzymes with patent documents and compilate information about the world and Brazilian enzyme markets. METHODS: The experimental design was carried out by the keyword-driven scope through the advanced search in the Espacenet database European Patent Office (EPO). The keywords selected were solid-state fermentation and the International Patent Classification code, C12N9 (enzymes; proenzymes), for prospecting of interest. RESULTS: In 2012, there was the higher number of registered patents (12). China holds 84% of deposited patents. Among the types of depositors, 54% of the selected patent documents were deposited by universities and institutes, and 44% by companies. 76.5% of the evaluated patents used fungi as enzyme producer. Analyzing the enzymes obtained in the registered patents, it is verified that the majority belongs to the group of carbohydrases with 43%, followed by proteases (25%), which are also the two classes of enzymes most commercialized in the market. CONCLUSION: China holds the majority of the registered patents but North America gets the largest global enzyme market revenue followed by Europe and Pacific Asia. Carbohydrases were the most commercialized enzymes and with the highest number of patents registered. Among the carbohydrases, cellulases, xylanases and amylases are the most frequent in patent registration while being fungi produced.


Subject(s)
Enzymes , Fermentation , Patents as Topic , Bacterial Proteins , Fungal Proteins
6.
Appl Biochem Biotechnol ; 175(6): 3048-57, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25588528

ABSTRACT

Three lipid extraction methods of hexane Soxhlet (Sox-Hex), Halim (HIP), and Bligh and Dyer (BD) were applied on freeze-dried (FD) and oven-dried (OD) Chlorella vulgaris biomass to evaluate their effects on lipid yield, fatty acid profile, and algal biodiesel quality. Among these three methods, HIP was the preferred one for C. vulgaris lipid recovery considering both extraction efficiency and solvent toxicity. It had the highest lipid yields of 20.0 and 22.0% on FD and OD biomass, respectively, with corresponding neutral lipid yields of 14.8 and 12.7%. The lipid profiling analysis showed that palmitic, oleic, linoleic, and α-linolenic acids were the major fatty acids in the algal lipids, and there were no significant differences on the amount of these acids between different drying and extraction methods. Correlative models applied to the fatty acid profiles concluded that high contents of palmitic and oleic acids in algal lipids contributed to balancing the ratio of saturated and unsaturated fatty acids and led to a high-quality algal biodiesel.


Subject(s)
Biofuels/analysis , Chemical Fractionation/methods , Chlorella vulgaris/metabolism , Fatty Acids/chemistry , Fatty Acids/isolation & purification , Freeze Drying/methods , Biomass , Chlorella vulgaris/chemistry , Chlorella vulgaris/growth & development , Fatty Acids/metabolism , Lipids/chemistry , Lipids/isolation & purification
7.
Biochim Biophys Acta ; 1820(12): 1867-78, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22951220

ABSTRACT

BACKGROUND: Extracellular ATP is an endogenous signaling molecule released by various cell types and under different stimuli. High concentrations of ATP released into the extracellular medium activate the P2X7 receptor in most inflammatory conditions. Here, we seek to characterize the effects of ATP in human intestinal epithelial cells and to evaluate morphological changes in these cells in the presence of ATP. METHODS: We treated human intestinal epithelial cells with ATP and evaluated the effects of this nucleotide by scanning and transmission electron microscopy analysis and calcium measurements. We used flow cytometry to evaluate apoptosis. We collected human intestinal explants for immunohistochemistry, apoptosis by the TUNEL approach and caspase-3 activity using flow cytometry analyses. We also evaluated the ROS production by flow cytometry and NO secretion by the Griess technique. RESULTS: ATP treatment induced changes characteristic of cell death by apoptosis and autophagy but not necrosis in the HCT8 cell line. ATP induced apoptosis in human intestinal explants that showed TUNEL-positive cells in the epithelium and in the lamina propria. The explants exhibited a significant increase of caspase-3 activity when the colonic epithelial cells were incubated with IFN-gamma followed by ATP as compared to control cells. In addition, it was found that antioxidants were able to inhibit both the ROS production and the apoptosis induced by ATP in epithelial cells. GENERAL SIGNIFICANCE: The activation of P2X7 receptors by ATP induces apoptosis and autophagy in human epithelial cells, possibly via ROS production, and this effect might have implications for gut inflammatory conditions.


Subject(s)
Adenocarcinoma/pathology , Adenosine Triphosphate/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Colon/drug effects , Epithelial Cells/drug effects , Ileal Neoplasms/pathology , Adenocarcinoma/metabolism , Blotting, Western , Calcium/metabolism , Caspase 3/metabolism , Cells, Cultured , Colon/cytology , Colon/metabolism , Epithelial Cells/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Humans , Ileal Neoplasms/metabolism , L-Lactate Dehydrogenase/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Necrosis , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism
8.
J Agric Food Chem ; 59(6): 2248-54, 2011 Mar 23.
Article in English | MEDLINE | ID: mdl-21361289

ABSTRACT

The objective of this study was to investigate the feasibility of incorporating mango and acerola pulps into a biodegradable matrix as a source of polyphenols, carotenoids, and other antioxidant compounds. We also sought to evaluate the efficacy of mango and acerola pulps as antioxidants in film-forming dispersions using a response surface methodology design experiment. The bio-based films were used to pack palm oil (maintained for 45 days of storage) under accelerated oxidation conditions (63% relative humidity and 30 °C) to simulate a storage experiment. The total carotenoid, total polyphenol, and vitamin C contents of films were evaluated, while the total carotenoid, peroxide index, conjugated diene, and hexanal content of the packaged product (palm oil) were also monitored. The same analysis also evaluated palm oil packed in films without antioxidant additives (C1), palm oil packed in low-density polyethylene films (C2), and palm oil with no package (C3) as a control. Although the film-forming procedure affected the antioxidant compounds, the results indicated that antioxidants were effective additives for protecting the packaged product. A lower peroxide index (36.12%), which was significantly different from that of the control (p<0.05), was detected in products packed in film formulations containing high concentration of additives. However, it was found that the high content of vitamin C in acerola pulp acted as a prooxidant agent, which suggests that the use of rich vitamin C pulps should be avoided as additives for films.


Subject(s)
Antioxidants/analysis , Food Packaging/instrumentation , Malpighiaceae/chemistry , Mangifera/chemistry , Manihot/chemistry , Plant Extracts/chemistry , Starch/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...