Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36850458

ABSTRACT

This paper presents the development, analysis, and application of chirped fiber Bragg gratings (CFBGs) for dynamic and static measurements of beams of different materials in the single-cantilever configuration. In this case, the beams were numerically analyzed using the finite-element method (FEM) for the assessment of the natural frequencies and vibration modes of the beam for the dynamic analysis of the structural element. Furthermore, the static numerical analysis was performed using a load at the free end of the beam, where the maximum strain and its distribution along the beam were analyzed, especially in the region at which the FBG was positioned. The experimental evaluation of the proposed CFBG sensor was performed in static conditions for forces from 0 to 50 N (in 10 N steps) applied at the free end of the beam, whereas the dynamic evaluation was performed by means of positioning an unbalanced motor at the end of the beam, which was excited at 16 Hz, 65 Hz, 100 Hz, and 131 Hz. The results showed the feasibility of the proposed device for the simultaneous assessment of the force and strain distribution along the CFBG region using the wavelength shift and the full-width at half-maximum (FWHM), respectively. In these cases, the determination coefficients of the spectral features as a function of the force and strain distribution were higher than 0.99 in all analyzed cases, where a potential resolution of 0.25 N was obtained on the force assessment. In the dynamic tests, the frequency spectrum of the sensor responses indicated a frequency peak at the excited frequency in all analyzed cases. Therefore, the proposed sensor device is a suitable option to extend the performance of sensors for structural health assessment, since it is possible to simultaneously measure different parameters in dynamic and static conditions using only one sensor device, which, due to its multiplexing capabilities, can be integrated with additional optical fiber sensors for the complete shape reconstruction with millimeter-range spatial resolution.

2.
Sensors (Basel) ; 22(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36081000

ABSTRACT

This paper presents the development, analysis and application of a fiber Bragg grating (FBG) array for two-dimensional (2D) shape reconstruction in a cantilever beam. The structural elements made of Pinus wood and Nylon 6.0 were numerically analyzed using the finite element method for the strain distribution when constant loading is applied at the free end of the beam. In addition, the temperature compensation method is proposed to decouple the temperature cross-sensitivity in the deflection analysis. In this case, the temperature sensitivities of all sensing elements of the 5-FBG array were obtained. An additional FBG was encapsulated in a silicone mold for increased sensitivity and positioned in the clamping point in which deflection was negligible. Temperature compensation was achieved considering the temperature measured by the silicone-embedded FBG (sensitivity of 27.78 pm/°C) and the sensitivity of all five FBGs of the deflection-sensing array (9.14 pm/°C ± 0.33 pm/°C). In the deflection experiments, the sensors presented a high linearity, in which a determination coefficient (R2) higher than 0.995 was obtained in all of the analyzed cases. Furthermore, the 2D shape construction using the proposed sensor approach resulted in the elastic line estimation for all analyzed beams, where the experimental results were in agreement with the theoretical and numerical analysis with a R2 higher than 0.99 in all of the analyzed cases. Therefore, the proposed sensor array is a feasible approach for real-time shape reconstruction of structural elements with the advantages related to the possibility of direct embedment in the measured structure.

3.
OMICS ; 9(1): 116-28, 2005.
Article in English | MEDLINE | ID: mdl-15805782

ABSTRACT

A survey of the Trypanosoma vivax genome was carried out by the genome sequence survey (GSS) approach resulting in 1,086 genomic sequences. A total of 455 high-quality GSS sequences were generated, consisting of 331 non-redundant sequences distributed in 264 singlets and 67 clusters in a total of 135.5 Kb of the T. vivax genome. The estimation of the overall G+C content, and the prediction of the presence of ORFs and putative genes were carried out using the Glimmer and Jemboss packages. Analysis of the obtained sequences was carried out by BLAST programs against 12 different databases and also using the Conserved Domain Database, InterProScan, and tRNAscan-SE. Along with the existing 23 T. vivax entries in the GenBank, the 32 putative genes predicted and the 331 non-redundant GSS sequences reported herein represent new potential markers for the development of PCRbased assays for specific diagnosis and typing of Trypanosoma vivax.


Subject(s)
Genome, Protozoan , Trypanosoma vivax/genetics , Trypanosoma vivax/physiology , Algorithms , Animals , Computational Biology , Databases, Genetic , Databases, Nucleic Acid , Expressed Sequence Tags , Gene Library , Genes, Protozoan/genetics , Genetic Markers , Open Reading Frames , Polymerase Chain Reaction , Protozoan Proteins/physiology , RNA, Transfer/genetics , Sequence Analysis, DNA , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...