Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Lett ; 45(2): 235-253, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36550336

ABSTRACT

Baicalein (BA) is a flavonoid with wide-ranging pharmacological activity. However, its biological evaluation is hampered by its low solubility in aqueous medium, making forms of incorporation that improve its solubility necessary. In the present study, BA was combined with a solution of silk fibroin protein (SF), a biomaterial used too as a drug carrier, to evaluate the anti-inflammatory potential of this combination, in vivo, in an experimental model, zebrafish (Danio rerio). Baicalein-silk fibroin (BASF) improved the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical scavenging rate (95%) in comparison with BA in solution. The acute toxicity study and histopathological analysis in zebrafish showed that BASF has low cytotoxic potential, except for the maxim dose of 2000 mg/kg. The use of BA in combination with SF enhanced the anti-inflammatory effect of flavonoids by inducing inflammatory peritoneal edema through carrageenan and achieved 77.6% inhibition of abdominal edema at a dose of 75 mg/kg. The results showed that the BASF, significantly increases the bioavailability and therapeutic effect of flavonoids and several results observed in this study may help in the development of new drugs.


Subject(s)
Fibroins , Animals , Fibroins/pharmacology , Zebrafish , Flavonoids , Anti-Inflammatory Agents/pharmacology , Edema/chemically induced , Edema/drug therapy , Silk
2.
Pharmaceuticals (Basel) ; 12(4)2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31801207

ABSTRACT

The plant species Libidibia ferrea (Mart. ex Tul.) LP Queiroz var. ferrea basionym of Caesalpinia ferrea (Mart. ex Tul.) is used in various regions of Brazil in folk medicine in the treatment of several health problems, especially in acute and chronic inflammatory processes. Most of the preparations employed are alcoholic. Therefore, this study aimed to evaluate the acute toxicity of the hydroethanolic extract of fruits of Libidibia ferrea (EHEFLf) in zebrafish, emphasizing the possible changes in the organic-cellular level of the gills, liver, kidneys, and intestine and on embryos. The result obtained by LC-M/MS from EHEFLf indicated a high concentration of possible polyhydroxylated substances. EHEFLf, at a dose of 2 g/kg orally, produced non-significant alterations of the analyzed organs. However, for embryos, the treatment with different concentrations demonstrated heart toxicity that was concentration-dependent. There is no evidence of a correlation of the observed effects with the phytochemical composition, and considering the species of animal used, it can be suggested that the oral use of L. ferrea hydroethanolic extract has an acceptable degree of safety for use as an oral medicinal product. and embryo results have shown significant affinity to the heart; however, it is perceived to be related to the concentrations used.

3.
Chem Biol Drug Des ; 90(3): 464-472, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28245094

ABSTRACT

The absence of effective vaccines against malaria and the difficulties associated with controlling mosquito vectors have left chemotherapy as the primary control measure against malaria. However, the emergence and spread of parasite resistance to conventional antimalarial drugs result in a worrisome scenario making the search for new drugs a priority. In the present study, the activities of nine neolignan derivatives were evaluated as follows: (i) against blood forms of chloroquine-resistant Plasmodium falciparum (clone W2), using the tritiated hypoxanthine incorporation and anti-HRPII assays; (ii) for cytotoxic activity against cultured human hepatoma cells (HepG2); and (iii) for intermolecular interaction with the P. falciparum cysteine protease of falcipain-2 (F2) by molecular docking. The neolignan derivatives 9 and 10 showed activity against the blood form of the chloroquine-resistant P. falciparum clone W2 and were not cytotoxic against cultured human hepatoma cells. A molecular docking study of these two neolignans with FP2 revealed several intermolecular interactions that should guide the design of future analogs.


Subject(s)
Antimalarials/chemical synthesis , Antimalarials/pharmacology , Lignans/chemistry , Lignans/pharmacology , Antimalarials/metabolism , Binding Sites , Cell Survival/drug effects , Chloroquine/pharmacology , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Drug Resistance/drug effects , Hep G2 Cells , Humans , Hydrogen Bonding , Lignans/metabolism , Molecular Docking Simulation , Plasmodium falciparum/drug effects , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Static Electricity , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...