Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 353: 141576, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462180

ABSTRACT

Bullfrog tadpoles, Aquarana catesbeiana, were exposed to settleable particulate matter (SePM), (1 g L-1, 96 h) and their organs were collected for analysis of metal/metalloid, oxidative stress and neurotoxicity in liver, muscle, kidney and brain. The SePM water of the exposed groups contained 18 of the 28 metals/metalloids detected in ambient particulate matter (APM). Fe56 and Al were those that presented the highest concentrations, Cr, Mn, Pb and Cu increased from 10 to 20 times and Ti, V, Sr, Rb, Cd, Sn and Ni increased from 1 to 3 times compared to the control. Bioaccumulation of metals/metalloids in the exposure water varied significantly between organs, with the muscle and liver showing the highest concentrations of metals, followed by the brain. Lipoperoxidation and malondialdehyde increased only in muscle, while carbonyl proteins increased only in the liver and brain. Regarding nitric oxide synthase, there was an increase in the liver and brain in the group exposed to SePM. Catalase activity decreased in the liver and muscle, while the activity of glutathione peroxidase, increased in the liver and kidney and decreased in muscle. Glutathione S-transferase, which is mainly responsible for detoxification, increased in the liver and decreased in muscle and the kidney. Cholinesterase activity increased only in the muscle. The results indicate oxidative stress, due to oxidation catalyzed by metals, components of SePM. Thus, the results contribute to the understanding that SePM has a deleterious effect on the aquatic environment, negatively affecting bullfrog tadpoles, in different ways and levels in relation to the analyzed organs.


Subject(s)
Metalloids , Water Pollutants, Chemical , Animals , Rana catesbeiana , Particulate Matter/analysis , Larva , Metals/analysis , Oxidative Stress , Water/pharmacology , Metalloids/analysis , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 881: 163380, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37044328

ABSTRACT

Some atmospheric pollutants may affect aquatic ecosystems after settling, generating contamination, bioaccumulation, and threats to aquatic species. Metallurgical processes result in the emission of settleable atmospheric particulate matter (SePM), including metals and metalloids, along with rare earth elements (REE) that are considered emerging contaminants. We report the 30-day exposure of brown mussels (Perna perna) to SePM collected in a metallurgical area of southeast Brazil close to estuarine ecosystems, followed by a 30-day clearance period, to evaluate the toxic potential of SePM to this model mollusk. The bioaccumulation of 28 elements identified in SePM and the sublethal effects were evaluated. REEs were found in SePM (Ce, Y, and La). Significant bioaccumulation of eight metals (Fe, Ni, Cu, Zn, Rb, Sr, Cd, and Ba) was found in the bivalves and correlates with the cytotoxicity and genotoxicity, showing a dose-dependent mode and suggesting a pre-pathological condition that could lead to ecological disturbances over time. Conversely, the unchanged lipid-peroxidation level after SePM exposure could indicate the effectiveness of the antioxidant system in protecting gills and digestive glands. The clearance period was not enough to successfully reverse the negative effects observed. So far, the current results enhance the comprehension of the negative role of SePM on metal bioaccumulation and metal-induced toxicity to aquatic biota. Thus, this report adds innovative findings on the role of SePM in aquatic pollution in coastal areas affected by atmospheric pollution, which should be relevant for future public policies to verify and control the environmental pollution.


Subject(s)
Bivalvia , Metalloids , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring/methods , Metals/toxicity , Metals/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...