Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 166(6): 915-927, 2023 09.
Article in English | MEDLINE | ID: mdl-37603368

ABSTRACT

The Flaviviridae family comprises positive-sense single-strand RNA viruses mainly transmitted by arthropods. Many of these pathogens are especially deleterious to the nervous system, and a myriad of neurological symptoms have been associated with infections by Zika virus (ZIKV), West Nile virus (WNV), and Japanese encephalitis virus (JEV) in humans. Studies suggest that viral replication in neural cells and the massive release of pro-inflammatory mediators lead to morphological alterations of synaptic spine structure and changes in the balance of excitatory/inhibitory neurotransmitters and receptors. Glutamate is the predominant excitatory neurotransmitter in the brain, and studies propose that either enhanced release or impaired uptake of this amino acid contributes to brain damage in several conditions. Here, we review existing evidence suggesting that glutamatergic dysfunction-induced by flaviviruses is a central mechanism for neurological damage and clinical outcomes of infection. We also discuss current data suggesting that pharmacological approaches that counteract glutamatergic dysfunction show benefits in animal models of such viral diseases.


Subject(s)
Flavivirus , Neurochemistry , Zika Virus Infection , Zika Virus , Animals , Humans , Glutamic Acid
2.
Behav Brain Res ; 451: 114519, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37263423

ABSTRACT

Zika virus (ZIKV) infection causes severe neurological consequences in both gestationally-exposed infants and adults. Sensorial gating deficits strongly correlate to the motor, sensorial and cognitive impairments observed in ZIKV-infected patients. However, no startle response or prepulse inhibition (PPI) assessment has been made in patients or animal models. In this study, we identified different outcomes according to the age of infection and sex in mice: neonatally infected animals presented an increase in PPI and delayed startle latency. However, adult-infected male mice presented lower startle amplitude, while a PPI impairment was observed 14 days after infection in both sexes. Our data further the understanding of the functional impacts of ZIKV on the developing and mature nervous system, which could help explain other behavioral and cognitive alterations caused by the virus. With this study, we support the startle reflex testing in ZIKV-exposed patients, especially infants, allowing for early detection of functional neuromotor damage and early intervention.


Subject(s)
Zika Virus Infection , Zika Virus , Female , Male , Animals , Mice , Reflex, Startle/physiology , Prepulse Inhibition , Zika Virus Infection/complications , Acoustic Stimulation
3.
Sci Rep ; 10(1): 6763, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32317689

ABSTRACT

Modulation of brain activity is one of the main mechanisms capable of demonstrating the synchronization dynamics of neural oscillations. In epilepsy, modulation is a key concept since seizures essentially result from neural hypersynchronization and hyperexcitability. In this study, we have introduced a time-dependent index based on the Kullback-Leibler divergence to quantify the effects of phase and frequency modulations of neural oscillations in neonatal mice exhibiting epileptiform activity induced by Zika virus (ZIKV) infection. Through this index, we demonstrate that fast oscillations (gamma and beta 2) are the more susceptible modulated rhythms in terms of phase, during seizures, whereas slow waves (delta and theta) mainly undergo changes in frequency. The index also allowed detection of specific patterns associated with the interdependent modulation of phase and frequency in neural activity. Furthermore, by comparing ZIKV modulations with the general computational model Epileptors, we verify different signatures related to the brain rhythms modulation in phase and frequency. These findings instigate new studies on the effects of ZIKV infection on neuronal networks from electrophysiological activities, and how different mechanisms can trigger epilepsy.


Subject(s)
Brain Waves/physiology , Epilepsy/physiopathology , Neurons/physiology , Zika Virus Infection/virology , Animals , Beta Rhythm/physiology , Brain/pathology , Brain/virology , Disease Models, Animal , Epilepsy/complications , Epilepsy/virology , Gamma Rhythm/physiology , Humans , Mice , Neurons/virology , Zika Virus/pathogenicity , Zika Virus Infection/complications , Zika Virus Infection/physiopathology
4.
Nat Commun ; 10(1): 3890, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31488835

ABSTRACT

Neurological complications affecting the central nervous system have been reported in adult patients infected by Zika virus (ZIKV) but the underlying mechanisms remain unknown. Here, we report that ZIKV replicates in human and mouse adult brain tissue, targeting mature neurons. ZIKV preferentially targets memory-related brain regions, inhibits hippocampal long-term potentiation and induces memory impairment in adult mice. TNF-α upregulation, microgliosis and upregulation of complement system proteins, C1q and C3, are induced by ZIKV infection. Microglia are found to engulf hippocampal presynaptic terminals during acute infection. Neutralization of TNF-α signaling, blockage of microglial activation or of C1q/C3 prevent synapse and memory impairment in ZIKV-infected mice. Results suggest that ZIKV induces synapse and memory dysfunction via aberrant activation of TNF-α, microglia and complement. Our findings establish a mechanism by which ZIKV affects the adult brain, and point to the need of evaluating cognitive deficits as a potential comorbidity in ZIKV-infected adults.


Subject(s)
Brain/virology , Synapses/virology , Virus Replication , Zika Virus Infection/virology , Zika Virus/physiology , Animals , Behavior, Animal , Brain/metabolism , Brain/pathology , Complement System Proteins/metabolism , Disease Models, Animal , Hippocampus/metabolism , Humans , Inflammation , Learning , Male , Memory , Memory Disorders , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Microglia/pathology , Neurons/virology , Presynaptic Terminals/metabolism , Receptors, Interleukin-1 Type I/genetics , Synapses/metabolism , Tumor Necrosis Factor-alpha/metabolism
5.
Pharmaceuticals (Basel) ; 12(2)2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30999590

ABSTRACT

Zika virus (ZIKV) infection was historically considered a disease with mild symptoms and no major consequences to human health. However, several long-term, late onset, and chronic neurological complications, both in congenitally-exposed babies and in adult patients, have been reported after ZIKV infection, especially after the 2015 epidemics in the American continent. The development or severity of these conditions cannot be fully predicted, but it is possible that genetic, epigenetic, and environmental factors may contribute to determine ZIKV infection outcomes. This reinforces the importance that individuals exposed to ZIKV are submitted to long-term clinical surveillance and highlights the urgent need for the development of therapeutic approaches to reduce or eliminate the neurological burden of infection. Here, we review the epidemiology of ZIKV-associated neurological complications and the role of factors that may influence disease outcome. Moreover, we discuss experimental and clinical evidence of drugs that have shown promising results in vitro or in vitro against viral replication and and/or ZIKV-induced neurotoxicity.

6.
Eur J Med Chem ; 130: 440-457, 2017 Apr 21.
Article in English | MEDLINE | ID: mdl-28282613

ABSTRACT

A novel series of feruloyl-donepezil hybrid compounds were designed, synthesized and evaluated as multitarget drug candidates for the treatment of Alzheimer's Disease (AD). In vitro results revealed potent acetylcholinesterase (AChE) inhibitory activity for some of these compounds and all of them showed moderate antioxidant properties. Compounds 12a, 12b and 12c were the most potent AChE inhibitors, highlighting 12a with IC50 = 0.46 µM. In addition, these three most promising compounds exhibited significant in vivo anti-inflammatory activity in the mice paw edema, pleurisy and formalin-induced hyperalgesy models, in vitro metal chelator activity for Cu2+ and Fe2+, and neuroprotection of human neuronal cells against oxidative damage. Molecular docking studies corroborated the in vitro inhibitory mode of interaction of these active compounds on AChE. Based on these data, compound 12a was identified as a novel promising drug prototype candidate for the treatment of AD with innovative structural feature and multitarget effects.


Subject(s)
Alzheimer Disease/drug therapy , Indans/pharmacology , Molecular Targeted Therapy/methods , Piperidines/pharmacology , Acrylates/chemistry , Acrylates/pharmacology , Animals , Anti-Inflammatory Agents , Antioxidants , Cell Line , Cells, Cultured , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Donepezil , Drug Design , Humans , Indans/chemistry , Male , Mice , Molecular Docking Simulation , Neurons/drug effects , Neuroprotective Agents/pharmacology , Piperidines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...