Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Top Med Chem ; 20(2): 121-131, 2020.
Article in English | MEDLINE | ID: mdl-31820692

ABSTRACT

BACKGROUND: Antibacterial resistance is a serious public health problem infecting millions in the global population. Currently, there are few antimicrobials on the market against resistant bacterial infections. Therefore, there is an urgent need for new therapeutic options against these strains. OBJECTIVE: In this study, we synthesized and evaluated ten Bis(2-hydroxynaphthalene-1,4-dione) against Gram-positive strains, including a hospital Methicillin-resistant (MRSA), and Gram-negative strains. METHODS: The compounds were prepared by condensation of aldehydes and lawsone in the presence of different L-aminoacids as catalysts in very good yields. The compounds were submitted to antibacterial analysis through disk diffusion and Minimal Inhibitory Concentration (MIC) assays. RESULTS: L-aminoacids have been shown to be efficient catalysts in the preparation of Bis(2- hydroxynaphthalene-1,4-dione) from 2-hydroxy-1,4-naphthoquinones and arylaldehydes in excellent yields of up to 96%. The evaluation of the antibacterial profile against Gram-positive strains (Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, S. epidermidis ATCC 12228) also including a hospital Methicillin-resistant S. aureus (MRSA) and Gram-negative strains (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and Klebsiella pneumoniae ATCC 4352), revealed that seven compounds showed antibacterial activity within the Clinical and Laboratory Standards Institute (CLSI) levels mainly against P. aeruginosa ATCC 27853 (MIC 8-128 µg/mL) and MRSA (MIC 32-128 µg/mL). In addition, the in vitro toxicity showed all derivatives with no hemolytic effects on healthy human erythrocytes. Furthermore, the derivatives showed satisfactory theoretical absorption, distribution, metabolism, excretion, toxicity (ADMET) parameters, and a similar profile to antibiotics currently in use. Finally, the in silico evaluation pointed to a structure-activity relationship related to lipophilicity for these compounds. This feature may help them in acting against Gram-negative strains, which present a rich lipid cell wall selective for several antibiotics. CONCLUSION: Our data showed the potential of this series for exploring new and more effective antibacterial activities in vivo against other resistant bacteria.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Naphthols/chemical synthesis , Naphthols/pharmacology , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Naphthols/chemistry , Structure-Activity Relationship
2.
Immunobiology ; 219(8): 627-32, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24767421

ABSTRACT

Schistosomiasis is a chronic disease caused by an intravascular trematode of the genus Schistosoma. Praziquantel is the drug used for treatment of schistosomiasis; nevertheless failure of treatment has been reported. Consequently, the identification of new effective schistosomicidal compounds is essential to ensure the effective control of schistosomiasis in the future. In this work we investigated the immunomodulatory and antiparasitic effects of the crude leaves extract of Mentha x piperita L. (peppermint) on murine Schistosomiasis mansoni. Female Balb/c mice were infected each with 50 S. mansoni cercariae and divided into three experimental groups: (I) untreated; (II) treated daily with M. x piperita L. (100mg/kg) and III) treated on 1/42/43 days post-infection with Praziquantel (500mg/kg). Another group with uninfected and untreated mice was used as a control. Subsequently, seven weeks post-infection, S. mansoni eggs were counted in the feces, liver and intestine. Worms were recovered by perfusion of the hepatic portal system and counted. Sera levels of IL-10, IL-5, IL-13, IFN-γ, IgG1, IgE and IgG2a were assayed by ELISA. Animals treated with a daily dose of M. x piperita L. showed increased sera levels of IL-10, IFN-γ, IgG2a and IgE. Besides, M. x piperita L. treatment promoted reduction in parasite burden by 35.2% and significant decrease in egg counts in the feces and intestine.


Subject(s)
Intestines/drug effects , Mentha piperita , Plant Extracts/administration & dosage , Schistosoma mansoni/immunology , Schistosomiasis mansoni/drug therapy , Animals , Cytokines/blood , Female , Humans , Immunoglobulins/blood , Intestines/parasitology , Mice , Mice, Inbred BALB C , Parasite Egg Count , Plant Leaves , Praziquantel/administration & dosage , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...