Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Basic Microbiol ; 48(5): 338-46, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18759238

ABSTRACT

Harmless bacteria inhabiting inner plant tissues are termed endophytes. Population fluctuations in the endophytic bacterium Pantoea agglomerans associated with two species of field cultured citrus plants were monitored over a two-year period. The results demonstrated that populations of P. agglomerans fluctuated in Citrus reticulata but not C. sinensis. A cryptic plasmid pPA3.0 (2.9 kb) was identified in 35 out of 44 endophytic isolates of P. agglomerans and was subsequently sequenced. The origins of replication were identified and nine out of 18 open reading frames (ORFs) revealed homology with described proteins. Notably, two ORFs were related to cellular transport systems and plasmid maintenance. Plasmid pPA3.0 was cloned and the gfp gene inserted to generate the pPAGFP vector. The vector was introduced into P. agglomerans isolates and revealed stability was dependent on the isolate genotype, ninety-percent stability values were reached after 60 hours of bacterial cultivation in most evaluated isolates. In order to definitively establish P. agglomerans as an endophyte, the non-transformed bacterium was reintroduced into in vitro cultivated seedlings and the density of inner tissue colonization in inoculated plants was estimated by bacterium re-isolation, while the tissue niches preferred by the bacterium were investigated by scanning electronic microscopy (SEM). Cells from P. agglomerans (strain ARB18) at similar densities were re-isolated from roots, stems and leaves and colonization of parenchyma and xylem tissues were observed. Data suggested that P. agglomerans is a ubiquitous citrus endophyte harboring cryptic plasmids. These characteristics suggest the potential to use the bacterium as a vehicle to introduce new genes in host plants via endophytic bacterial transformation.


Subject(s)
Citrus/microbiology , Genetic Vectors , Pantoea/growth & development , Pantoea/genetics , Plasmids , Base Sequence , Citrus/ultrastructure , Cloning, Molecular , DNA, Bacterial/genetics , Genotype , Green Fluorescent Proteins/genetics , Microscopy, Electron, Scanning , Molecular Sequence Data , Open Reading Frames , Pantoea/isolation & purification , Replication Origin , Transformation, Bacterial , Xylem/microbiology , Xylem/ultrastructure
2.
FEMS Microbiol Lett ; 257(2): 236-42, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16553859

ABSTRACT

Xylella fastidiosa causes citrus variegated chlorosis (CVC), a destructive disease of citrus. Xylella fastidiosa forms a biofilm inside plants and insect vectors. Biofilms are complex structures involving X. fastidiosa cells and an extracellular matrix which blocks water and nutrient transport in diseased plants. It is hypothesized that the matrix might be composed of an extracellular polysaccharide (EPS), coded by a cluster of nine genes closely related to the xanthan gum operon of Xanthomonas campestris pv. campestris. To understand the role of X. fastidiosa gum genes on biofilm formation and EPS biosynthesis, we produced gumB and gumF mutants. Xylella fastidiosa mutants were obtained by insertional duplication mutagenesis and recovered after triply cloning the cells. Xylella fastidiosa gumB and gumF mutants exhibited normal cell characteristics; typical colony morphology and EPS biosynthesis were not altered. It was of note that X. fastidiosa mutants showed a reduced capacity to form biofilm when BCYE was used as the sustaining medium, a difference not observed with PW medium. Unlike X. campestris pv. campestris, the expression of the X. fastidiosa gumB or gumF genes was not regulated by glucose.


Subject(s)
Gene Expression Regulation, Bacterial , Xylella/genetics , Biofilms/growth & development , Culture Media , Genes, Bacterial/genetics , Multigene Family/genetics , Mutagenesis , Polysaccharides, Bacterial/metabolism , Xylella/metabolism , Xylella/physiology
3.
J Virol ; 79(5): 3028-37, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15709023

ABSTRACT

Citrus sudden death (CSD) is a new disease that has killed approximately 1 million orange trees in Brazil. Here we report the identification of a new virus associated with the disease. RNAs isolated from CSD-affected and nonaffected trees were used to construct cDNA libraries. A set of viral sequences present exclusively in libraries of CSD-affected trees was used to obtain the complete genome sequence of the new virus. Phylogenetic analysis revealed that this virus is a new member of the genus Marafivirus. Antibodies raised against the putative viral coat proteins allowed detection of viral antigens of expected sizes in affected plants. Electron microscopy of purified virus confirmed the presence of typical isometric Marafivirus particles. The screening of 773 affected and nonaffected citrus trees for the presence of the virus showed a 99.7% correlation between disease symptoms and the presence of the virus. We also detected the virus in aphids feeding on affected trees. These results suggest that this virus is likely to be the causative agent of CSD. The virus was named Citrus sudden death-associated virus.


Subject(s)
Citrus/virology , Tymoviridae/genetics , Tymoviridae/isolation & purification , Amino Acid Sequence , Animals , Aphids/virology , Base Sequence , Brazil , Capsid Proteins/genetics , DNA, Viral/genetics , Genome, Viral , Microscopy, Electron , Molecular Sequence Data , Phylogeny , Plant Diseases/virology , Tymoviridae/classification , Tymoviridae/pathogenicity
4.
Appl Environ Microbiol ; 68(9): 4658-65, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12200328

ABSTRACT

Mutagenesis by homologous recombination was evaluated in Xylella fastidiosa by using the bga gene, coding for beta-galactosidase, as a model. Integration of replicative plasmids by homologous recombination between the cloned truncated copy of bga and the endogenous gene was produced by one or two crossover events leading to beta-galactosidase mutants. A promoterless chloramphenicol acetyltransferase gene was used to monitor the expression of the target gene and to select a cvaB mutant.


Subject(s)
Gammaproteobacteria/genetics , beta-Galactosidase/genetics , Alleles , Chloramphenicol/pharmacology , Chloramphenicol O-Acetyltransferase/biosynthesis , Genes, Reporter , Mutagenesis, Insertional , Plasmids/genetics , Recombination, Genetic , Replication Origin/genetics , beta-Galactosidase/deficiency , beta-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...