Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Cytotherapy ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38970613

ABSTRACT

Chimeric antigen receptor (CAR) engineering of natural killer (NK) cells has shown promising results in early-phase clinical studies. However, advancing CAR-NK cell therapeutic efficacy is imperative. In this study, we investigated the impact of a fourth-generation CD19-targeted CAR (CAR.19) coexpressing IL-27 on NK-92 cells. We observed a significant improvement in NK-92 cell proliferation and cytotoxicity activity against B-cell cancer cell lines, both in vitro and in a xenograft mouse B-cell lymphoma model. Our systematic transcriptome analysis of the activated NK-92 CAR variants further supports the potential of IL-27 in fourth-generation CARs to overcome limitations of NK cell-based targeted tumor therapies by providing essential growth and activation signals. Integrating IL-27 into CAR-NK cells emerges as a promising strategy to enhance their therapeutic potential and elicit robust responses against cancer cells. These findings contribute substantially to the mounting evidence supporting the potential of fourth-generation CAR engineering in advancing NK cell-based immunotherapies.

2.
Cancers (Basel) ; 15(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38067214

ABSTRACT

Detection of t(9;22), and consequent BCR::ABL1 fusion, is still a marker of worse prognosis for acute lymphoblastic leukemia (ALL), with resistance to tyrosine-kinase inhibitor therapy being a major obstacle in the clinical practice for this subset of patients. In this study, we investigated the effectiveness of targeting poly-ADP-ribose polymerase (PARP) in a model of BCR::ABL1 p190+ ALL, the most common isoform to afflict ALL patients, and demonstrated the use of experimental PARP inhibitor (PARPi), AZD2461, as a therapeutic option with cytotoxic capabilities similar to that of imatinib, the current gold standard in medical care. We characterized cytostatic profiles, induced cell death, and biomarker expression modulation utilizing cell models, also providing a comprehensive genome-wide analysis through an aCGH of the model used, and further validated PARP1 differential expression in samples of ALL p190+ patients from local healthcare institutions, as well as in larger cohorts of online and readily available datasets. Overall, we demonstrate the effectiveness of PARPi in the treatment of BCR::ABL1 p190+ ALL cell models and that PARP1 is differentially expressed in patient samples. We hope our findings help expand the characterization of molecular profiles in ALL settings and guide future investigations into novel biomarker detection and pharmacological choices in clinical practice.

3.
Front Immunol ; 14: 1226518, 2023.
Article in English | MEDLINE | ID: mdl-37818365

ABSTRACT

Introduction: Natural killer 92 (NK-92) cells are an attractive therapeutic approach as alternative chimeric antigen receptor (CAR) carriers, different from T cells, once they can be used in the allogeneic setting. The modest in vivo outcomes observed with NK-92 cells continue to present hurdles in successfully translating NK-92 cell therapies into clinical applications. Adoptive transfer of CAR-NK-92 cells holds out the promise of therapeutic benefit at a lower rate of adverse events due to the absence of GvHD and cytokine release syndrome. However, it has not achieved breakthrough clinical results yet, and further improvement of CAR-NK-92 cells is necessary. Methods: In this study, we conducted a comparative analysis between CD19-targeted CAR (CAR.19) co-expressing IL-15 (CAR.19-IL15) with IL-15/IL-15Rα (CAR.19-IL15/IL15Rα) to promote NK cell proliferation, activation, and cytotoxic activity against B-cell leukemia. CAR constructs were cloned into lentiviral vector and transduced into NK-92 cell line. Potency of CAR-NK cells were assessed against CD19-expressing cell lines NALM-6 or Raji in vitro and in vivo in a murine model. Tumor burden was measured by bioluminescence. Results: We demonstrated that a fourth- generation CD19-targeted CAR (CAR.19) co-expressing IL-15 linked to its receptor IL-15/IL-15Rα (CAR.19-IL-15/IL-15Rα) significantly enhanced NK-92 cell proliferation, proinflammatory cytokine secretion, and cytotoxic activity against B-cell cancer cell lines in vitro and in a xenograft mouse model. Conclusion: Together with the results of the systematic analysis of the transcriptome of activated NK-92 CAR variants, this supports the notion that IL-15/IL-15Rα comprising fourth-generation CARs may overcome the limitations of NK-92 cell-based targeted tumor therapies in vivo by providing the necessary growth and activation signals.


Subject(s)
Receptors, Chimeric Antigen , Humans , Mice , Animals , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Interleukin-15/genetics , Interleukin-15/metabolism , Cell Line, Tumor , Killer Cells, Natural , Antigens, CD19 , Cell Proliferation
4.
Adv Exp Med Biol ; 1429: 85-110, 2023.
Article in English | MEDLINE | ID: mdl-37486518

ABSTRACT

Our current genetic engineering capacity through synthetic biology and genome editing is the foundation of a revolution in biomedical science: the use of genetically programmed cells as therapeutics. The prime example of this paradigm is the adoptive transfer of genetically engineered T cells to express tumor-specific receptors, such as chimeric antigen receptors (CARs) or engineered T-cell receptors (TCR). This approach has led to unprecedented complete remission rates in patients with otherwise incurable hematological malignancies. However, this approach is still largely ineffective against solid tumors, which comprise the vast majority of neoplasms. Also, limitations associated with the autologous nature of this therapy and shared markers between cancer cells and T cells further restrict the access to these therapies. Here, we described how cutting-edge genome editing approaches have been applied to unlock the full potential of these revolutionary therapies, thereby increasing therapeutic efficacy and patient accessibility.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Gene Editing , Immunotherapy, Adoptive , Receptors, Chimeric Antigen/therapeutic use , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes , Neoplasms/genetics , Neoplasms/therapy , Cell Engineering
5.
Exp Hematol ; 124: 22-35.e3, 2023 08.
Article in English | MEDLINE | ID: mdl-37331423

ABSTRACT

Generating hematopoietic stem cells (HSCs) from pluripotent stem cells (PSCs) has been a long-lasting quest in the field of hematopoiesis. Previous studies suggested that enforced expression of BCR-ABL, the unique oncogenic driver of chronic myelogeneous leukemia (CML), in embryonic stem cells (ESCs)-derived hematopoietic cells is sufficient to confer long-term in vivo repopulating potential. To precisely uncover the molecular events regulated by the tyrosine kinase activity of BCR-ABL1 (p210) during the course of hematopoietic differentiation, we engineered a Tet-ON inducible system to modulate its expression in murine ESCs (mESCs). We showed in unique site-directed knock-in ESC model that BCR-ABL expression tightly regulated by doxycycline (dox) controls the formation and the maintenance of immature hematopoietic progenitors. Interestingly, these progenitors can be expanded in vitro for several passages in the presence of dox. Our analysis of cell surface markers and transcriptome compared with wild-type fetal and adult HSCs unraveled a similar molecular signature. Long-term culture initiating cell (LTC-IC) assay confirmed their self-renewal capacities albeit with a differentiation bias toward erythroid and myeloid cells. Collectively, our novel Tet-ON system represents a unique in vitro model to shed lights on ESC-derived hematopoiesis, CML initiation, and maintenance.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Mice , Animals , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Hematopoietic Stem Cells/metabolism , Cell Differentiation , Embryonic Stem Cells/metabolism , Doxycycline/pharmacology , Doxycycline/metabolism
6.
Biomedicines ; 11(4)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37189716

ABSTRACT

Acute myeloid leukemia (AML) is a hematologic malignancy that occurs due to alterations such as genetic mutations, chromosomal translocations, or changes in molecular levels. These alterations can accumulate in stem cells and hematopoietic progenitors, leading to the development of AML, which has a prevalence of 80% of acute leukemias in the adult population. Recurrent cytogenetic abnormalities, in addition to mediating leukemogenesis onset, participate in its evolution and can be used as established diagnostic and prognostic markers. Most of these mutations confer resistance to the traditionally used treatments and, therefore, the aberrant protein products are also considered therapeutic targets. The surface antigens of a cell are characterized through immunophenotyping, which has the ability to identify and differentiate the degrees of maturation and the lineage of the target cell, whether benign or malignant. With this, we seek to establish a relationship according to the molecular aberrations and immunophenotypic alterations that cells with AML present.

7.
Int J Biol Macromol ; 242(Pt 1): 124647, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37146851

ABSTRACT

Glioblastoma (GBM) is the most common brain cancer characterized by aggressive and infiltrated tumors. For this, hybrid biopolymer-lipid nanoparticles coated with biopolymers such as chitosan and lipidic nanocarriers (LN) loaded with a photosensitizer (AlClPc) can be used for GBM photodynamic therapy. The chitosan-coated LN exhibited stable physicochemical characteristics and presented as an excellent lipid nanocarrier with highly efficiently encapsulated photosensitizer chloro-aluminum phthalocyanine (AlClPc). LN(AlClPc)Ct0.1% in the presence of light produced more reactive oxygen species and reduced brain tumor cell viability and proliferation. Confirm the effects of in vivo LN applications with photodynamic therapy confirmed that the total brain tumor area decreased without systemic toxicity in mice. These results suggest a promising strategy for future clinical applications to improve brain cancer treatment.


Subject(s)
Brain Neoplasms , Chitosan , Glioblastoma , Nanoparticles , Photochemotherapy , Animals , Mice , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Glioblastoma/drug therapy , Chitosan/therapeutic use , Photochemotherapy/methods , Nanoparticles/chemistry , Brain Neoplasms/drug therapy , Lipids , Cell Line, Tumor
8.
Regen Ther ; 22: 79-89, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36712958

ABSTRACT

Introduction: Diabetes mellitus (DM) is a chronic disease and a major cause of mortality and morbidity worldwide. The hyperglycemia caused by DM induces micro and macrovascular complications that lead, among other consequences, to chronic wounds and amputations. Cell therapy and tissue engineering constitute recent therapeutic alternatives to improve wound healing in diabetic patients. The current study aimed to analyze the effectiveness of biocuratives containing human mesenchymal stem cells (MSCs) associated with a hydrogel matrix in the wound healing process and related inflammatory cell profile in diabetic mice. Methods: Biocuratives containing MSCs were constructed by 3D bioprinting, and applied to skin wounds on the back of streptozotocin (STZ)-induced type 1 diabetic (T1D) mice. The healing process, after the application of biocuratives with or without MSCs was histologically analyzed. In parallel, genes related to growth factors, mast cells (MC), M1 and M2 macrophage profiles were evaluated by RT-PCR. Macrophages were characterized by flow cytometry, and MC by toluidine blue staining and flow cytometry. Results: Mice with T1D exhibited fewer skin MC and delayed wound healing when compared to the non-diabetic group. Treatment with the biocuratives containing MSCs accelerated wound healing and improved skin collagen deposition in diabetic mice. Increased TGF-ß gene expression and M2 macrophage-related markers were also detected in skin of diabetic mice that received MSCs-containing biocuratives. Finally, MSCs upregulated IL-33 gene expression and augmented the number of MC in the skin of diabetic mice. Conclusion: These results reveal the therapeutic potential of biocuratives containing MSCs in the healing of skin wounds in diabetic mice, providing a scientific base for future treatments in diabetic patients.

9.
Exp Hematol ; 118: 40-52, 2023 02.
Article in English | MEDLINE | ID: mdl-36535407

ABSTRACT

Chronic myeloid leukemia (CML) is a clonal hematopoietic malignancy driven by the BCR-ABL1 fusion oncoprotein. The development of tyrosine kinase inhibitors (TKIs) has deeply increased long-term survival of CML patients. Nonetheless, one patient out of four will switch TKI off owing either to drug intolerance or resistance partly due to amplification or mutations of BCR-ABL1 oncogene and alteration in ATP-binding cassette (ABC) transporters. Increasing evidence suggests the involvement of the microRNA miR-495-3p in cancer-associated chemoresistance through multidrug resistance 1 (MDR1) gene, which encodes an ATP-dependent efflux pump. Our study aimed at investigating the potential role of miR-495-3p in CML TKI chemo-sensitivity and determining the underlying molecular circuitry involved. We first observed that miR-495-3p expression was lower in BCR-ABL1-expressing cellular models in vitro. Notably, loss-of-function experiments showed increased proliferation associated with a decreased number of nondividing cells (G0/G1) and resistance to Imatinib. Conversely, our data showed that miR-495-3p overexpression hindered leukemic cell growth and TKI resistance in Imatinib-resistant T315I-mutant cells, as well as drug efflux activity through MDR1 regulation. Further investigating the role of miR-495-3p in CML patients, we found that predicted miR-495-3p targets were upregulated in patients in blast crisis that were involved in protein phosphorylation and associated with the worst prognosis. Taken together, our results demonstrate that downregulation of miR-495-3p expression is important in the malignant phenotype of CML and TKI resistance mechanisms and could be a useful biomarker and a potential therapeutic target to eradicate CML.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , MicroRNAs , Humans , Imatinib Mesylate/pharmacology , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Drug Resistance, Multiple , Adenosine Triphosphate
10.
Front Immunol ; 14: 1309010, 2023.
Article in English | MEDLINE | ID: mdl-38259442

ABSTRACT

During the last two decades, the introduction of tyrosine kinase inhibitors (TKIs) to the therapy has changed the natural history of CML but progression into accelerated and blast phase (AP/BP) occurs in 3-5% of cases, especially in patients resistant to several lines of TKIs. In TKI-refractory patients in advanced phases, the only curative option is hematopoietic stem cell transplantation. We and others have shown the relevance of the expression of the Interleukin-2-Receptor α subunit (IL2RA/CD25) as a biomarker of CML progression, suggesting its potential use as a therapeutic target for CAR-based therapies. Here we show the development of a CAR-NK therapy model able to target efficiently a blast crisis cell line (K562). The design of the CAR was based on the scFv of the clinically approved anti-CD25 monoclonal antibody (Basiliximab). The CAR construct was integrated into NK92 cells resulting in the generation of CD25 CAR-NK92 cells. Target K562 cells were engineered by lentiviral gene transfer of CD25. In vitro functionality experiments and in vivo leukemogenicity experiments in NSG mice transplanted by K562-CD25 cells showed the efficacy and specificity of this strategy. These proof-of-concept studies could represent a first step for further development of this technology in refractory/relapsed (R/R) CML patients in BP as well as in R/R acute myeloblastic leukemias (AML).


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myeloid , Receptors, Chimeric Antigen , Humans , Animals , Mice , Blast Crisis/genetics , Blast Crisis/therapy , Receptors, Chimeric Antigen/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy , K562 Cells , Killer Cells, Natural
11.
Pharmaceutics ; 14(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36432655

ABSTRACT

Oxaliplatin was nearly twice as hematotoxic, with optimal circadian timing differing by 6 h, in women as compared to men with colorectal cancers. Hence, we investigated sex- and timing-related determinants of oxaliplatin hematopoietic toxicities in mice. Body-weight loss (BWL), blood cell counts, bone marrow cellularity (BMC) and seven flow-cytometry-monitored hematopoietic progenitor populations were evaluated 72 h after oxaliplatin chronotherapy administration (5 mg/kg). In control animals, circadian rhythms of circulating white blood cells showed a peak at ZT5 in both sexes, whereas BMC was maximum at ZT20 in males and ZT13h40 in females. All BM progenitor counts presented robust rhythms with phases around ZT3h30 in females, whereas only three of them rhythmically cycled in males with a ≈ -6 h phase shift. In treated females, chronotoxicity rhythms occurred in BWL, WBC, BMC and all BM progenitors with the best timing at ZT15, ZT21, ZT15h15 and ZT14h45, respectively. In males, almost no endpoints showed circadian rhythms, BWL and WBC toxicity being minimal, albeit with a substantial drop in BM progenitors. Increasing dose (10 mg/kg) in males induced circadian rhythms in BWL and WBC but not in BM endpoints. Our results suggest complex and sex-specific clock-controlled regulation of the hematopoietic system and its response to oxaliplatin.

12.
Immunother Adv ; 2(1): ltac005, 2022.
Article in English | MEDLINE | ID: mdl-35919489

ABSTRACT

Immune checkpoint (IC) blockade using monoclonal antibodies is currently one of the most successful immunotherapeutic interventions to treat cancer. By reinvigorating antitumor exhausted T cells, this approach can lead to durable clinical responses. However, the majority of patients either do not respond or present a short-lived response to IC blockade, in part due to a scarcity of tumor-specific T cells within the tumor microenvironment. Adoptive transfer of T cells genetically engineered to express chimeric antigen receptors (CARs) or engineered T-cell receptors (TCRs) provide the necessary tumor-specific immune cell population to target cancer cells. However, this therapy has been considerably ineffective against solid tumors in part due to IC-mediated immunosuppressive effects within the tumor microenvironment. These limitations could be overcome by associating adoptive cell transfer of genetically engineered T cells and IC blockade. In this comprehensive review, we highlight the strategies and outcomes of preclinical and clinical attempts to disrupt IC signaling in adoptive T-cell transfer against cancer. These strategies include combined administration of genetically engineered T cells and IC inhibitors, engineered T cells with intrinsic modifications to disrupt IC signaling, and the design of CARs against IC molecules. The current landscape indicates that the synergy of the fast-paced refinements of gene-editing technologies and synthetic biology and the increased comprehension of IC signaling will certainly translate into a novel and more effective immunotherapeutic approaches to treat patients with cancer.

13.
Front Oncol ; 12: 931050, 2022.
Article in English | MEDLINE | ID: mdl-35814466

ABSTRACT

Hematopoietic stem cells (HSCs) are known for their ability to proliferate and self-renew, thus being responsible for sustaining the hematopoietic system and residing in the bone marrow (BM). Leukemic stem cells (LSCs) are recognized by their stemness features such as drug resistance, self-renewal, and undifferentiated state. LSCs are also present in BM, being found in only 0.1%, approximately. This makes their identification and even their differentiation difficult since, despite the mutations, they are cells that still have many similarities with HSCs. Although the common characteristics, LSCs are heterogeneous cells and have different phenotypic characteristics, genetic mutations, and metabolic alterations. This whole set of alterations enables the cell to initiate the process of carcinogenesis, in addition to conferring drug resistance and providing relapses. The study of LSCs has been evolving and its application can help patients, where through its count as a biomarker, it can indicate a prognostic factor and reveal treatment results. The selection of a target to LSC therapy is fundamental. Ideally, the target chosen should be highly expressed by LSCs, highly selective, absence of expression on other cells, in particular HSC, and preferentially expressed by high numbers of patients. In view of the large number of similarities between LSCs and HSCs, it is not surprising that current treatment approaches are limited. In this mini review we seek to describe the immunophenotypic characteristics and mechanisms of resistance presented by LSCs, also approaching possible alternatives for the treatment of patients.

14.
Int J Mol Sci ; 23(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35897788

ABSTRACT

The circadian clock (CC) is a daily system that regulates the oscillations of physiological processes and can respond to the external environment in order to maintain internal homeostasis. For the functioning of the CC, the clock genes (CG) act in different metabolic pathways through the clock-controlled genes (CCG), providing cellular regulation. The CC's interruption can result in the development of different diseases, such as neurodegenerative and metabolic disorders, as well as cancer. Leukemias correspond to a group of malignancies of the blood and bone marrow that occur when alterations in normal cellular regulatory processes cause the uncontrolled proliferation of hematopoietic stem cells. This review aimed to associate a deregulated CC with the manifestation of leukemia, looking for possible pathways involving CG and their possible role as leukemic biomarkers.


Subject(s)
Chronobiology Disorders , Circadian Clocks , Leukemia , Neoplasms , Biomarkers , Circadian Clocks/genetics , Circadian Rhythm/genetics , Humans , Leukemia/genetics
15.
Immunother Adv, v. 2, n.1, ltac005, jan. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4466

ABSTRACT

Immune checkpoint (IC) blockade using monoclonal antibodies is currently one of the most successful immunotherapeutic interventions to treat cancer. By reinvigorating antitumor exhausted T cells, this approach can lead to durable clinical responses. However, the majority of patients either do not respond or present a short-lived response to IC blockade, in part due to a scarcity of tumor-specific T cells within the tumor microenvironment. Adoptive transfer of T cells genetically engineered to express chimeric antigen receptors (CARs) or engineered T-cell receptors (TCRs) provide the necessary tumor-specific immune cell population to target cancer cells. However, this therapy has been considerably ineffective against solid tumors in part due to IC-mediated immunosuppressive effects within the tumor microenvironment. These limitations could be overcome by associating adoptive cell transfer of genetically engineered T cells and IC blockade. In this comprehensive review, we highlight the strategies and outcomes of preclinical and clinical attempts to disrupt IC signaling in adoptive T-cell transfer against cancer. These strategies include combined administration of genetically engineered T cells and IC inhibitors, engineered T cells with intrinsic modifications to disrupt IC signaling, and the design of CARs against IC molecules. The current landscape indicates that the synergy of the fast-paced refinements of gene-editing technologies and synthetic biology and the increased comprehension of IC signaling will certainly translate into a novel and more effective immunotherapeutic approaches to treat patients with cancer.

16.
Int J Mol Sci ; 22(10)2021 May 16.
Article in English | MEDLINE | ID: mdl-34065633

ABSTRACT

The circadian clock coordinates biological and physiological functions to day/night cycles. The perturbation of the circadian clock increases cancer risk and affects cancer progression. Here, we studied how BMAL1 knockdown (BMAL1-KD) by shRNA affects the epithelial-mesenchymal transition (EMT), a critical early event in the invasion and metastasis of colorectal carcinoma (CRC). In corresponding to a gene set enrichment analysis, which showed a significant enrichment of EMT and invasive signatures in BMAL1_high CRC patients as compared to BMAL1_low CRC patients, our results revealed that BMAL1 is implicated in keeping the epithelial-mesenchymal equilibrium of CRC cells and influences their capacity of adhesion, migration, invasion, and chemoresistance. Firstly, BMAL1-KD increased the expression of epithelial markers (E-cadherin, CK-20, and EpCAM) but decreased the expression of Twist and mesenchymal markers (N-cadherin and vimentin) in CRC cell lines. Finally, the molecular alterations after BMAL1-KD promoted mesenchymal-to-epithelial transition-like changes mostly appeared in two primary CRC cell lines (i.e., HCT116 and SW480) compared to the metastatic cell line SW620. As a consequence, migration/invasion and drug resistance capacities decreased in HCT116 and SW480 BMAL1-KD cells. Together, BMAL1-KD alerts the delicate equilibrium between epithelial and mesenchymal properties of CRC cell lines, which revealed the crucial role of BMAL1 in EMT-related CRC metastasis and chemoresistance.


Subject(s)
ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Colonic Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition/genetics , Antigens, CD/metabolism , Cadherins/metabolism , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Cell Movement/genetics , Cell Survival/drug effects , Colonic Neoplasms/metabolism , Databases, Genetic , Epithelial Cell Adhesion Molecule/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Gene Knockdown Techniques , Humans , Keratin-20/metabolism , Neoplasm Invasiveness/genetics , Oxaliplatin/pharmacology , Protein Transport , Vimentin/metabolism , beta Catenin/metabolism
17.
Crit Rev Immunol ; 41(1): 41-67, 2021.
Article in English | MEDLINE | ID: mdl-33822524

ABSTRACT

The field of cell therapy is leading a paradigm shift in drug development. The recent convergence of several fields, including immunology, genetics, and synthetic biology, now allows for the introduction of artificial receptors and the design of entire genetic circuitries to finely program the behavior of injected cells. A prime example of these next-generation living drugs comes in the form of T cells expressing chimeric antigen receptors (CARs), which have already demonstrated definitive evidence of therapeutic efficacy against some hematological malignancies. However, several obstacles still restrict the antitumor efficacy of and impair the widespread use of CAR-T cells. Critical challenges include limited persistence and antitumor activity in vivo, antigen escape, scarcity of suitable single markers for targeting, and therapy-related toxicity. Nevertheless, intense research activity in this field has resulted in a plethora of creative solutions to address each of these limitations. In this review, we provide a comprehensive snapshot of the current strategies used to enhance the therapeutic efficacy, applicability, and safety of genetically engineered immune cells to treat cancer.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Cell- and Tissue-Based Therapy , Humans , Immunotherapy, Adoptive , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes
18.
Exp Cell Res ; 399(1): 112434, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33340494

ABSTRACT

It has been suggested that the bone marrow microenvironment harbors two distinct populations of mesenchymal stromal cells (MSC), one with a perivascular location and other present in the endosteum. A better understanding of the biology of these MSC subsets has been pursued in order to refine its clinical application. However, most comparative characterizations of mouse MSC have been performed in normoxia. This can result in misleading interpretations since mouse MSC subsets with low/defective p53 activity are known to be selected during culture in normoxia. Here, we report a comprehensive in vitro characterization of mouse MSC isolated from bone marrow (BM-MSC) and compact bone (CB-MSC) expanded and assayed under hypoxia for their morphology, clonogenic efficiency and differentiation capacity. We found that, under hypoxia, compact bone is richer in absolute numbers of MSC and isolation of MSC from compact bone is associated with a reduced risk of hematopoietic cell carryover. In addition, CB-MSC have higher in vitro osteogenic capacity than BM-MSC, while adipogenic differentiation potential is similar. These findings reinforce the hypothesis of the existence of MSC in bone marrow and compact bone representing functionally distinct cell populations and highlight the compact bone as an efficient source of murine MSC under physiological oxygen concentrations.


Subject(s)
Bone Marrow Cells/physiology , Cell Hypoxia/physiology , Cortical Bone/cytology , Mesenchymal Stem Cells/physiology , Adipogenesis/physiology , Animals , Bone Marrow Cells/cytology , Cell Differentiation/physiology , Cell Proliferation , Cells, Cultured , Immunophenotyping , Male , Mice , Mice, Inbred C57BL , Osteogenesis/physiology , Phenotype
19.
Cancer Lett ; 501: 114-123, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33383153

ABSTRACT

The mechanisms underlying the propensity of melanomas to metastasize are not completely understood. We hypothesized that melanoma cells are capable of promptly activating an epithelial-to-mesenchymal transition (EMT)-like profile in response to stroma-derived factors. Thus, we investigated the role of mesenchymal stromal cells (MSCs), a cell population considered as a precursor of tumor stroma, on the activation of an EMT-like profile and acquisition of metastatic traits in melanoma cells. After subcutaneous co-injection with mouse B16 melanoma cells, MSCs occupied perivascular sites within tumors and enhanced B16 metastasis to the lungs. In vitro, MSCs' secretome activated an EMT-like profile in B16 cells, reducing their avidity to fibronectin, and increasing their motility and invasiveness. These effects were abrogated upon blocking of MET phosphorylation in B16 cells using small molecule inhibitors. MSCs also activated an EMT-like profile in human melanoma cells from different stages of progression. Activation of EMT in human cells was associated with increased levels of p-STAT1 and p-STAT3. In conclusion, both mouse and human melanoma cells are equipped to activate an EMT-like program and acquire metastatic traits through the activation of distinct pathways by MSCs' secretome.


Subject(s)
Melanoma, Experimental/pathology , Melanoma/pathology , Mesenchymal Stem Cells/pathology , Animals , Epithelial-Mesenchymal Transition , Hepatocyte Growth Factor/metabolism , Humans , Melanoma/metabolism , Melanoma, Experimental/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...