Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Metabolites ; 12(3)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35323713

ABSTRACT

Iron is an essential component for metabolic processes, including oxygen transport within hemoglobin, tricarboxylic acid (TCA) cycle activity, and mitochondrial energy transformation. Iron deficiency can thus lead to metabolic dysfunction and eventually result in iron deficiency anemia (IDA), which affects approximately 1.5 billion people worldwide. Using a rat model of IDA induced by phlebotomy, we studied the effects of IDA on mitochondrial respiration in peripheral blood mononuclear cells (PBMCs) and the liver. Furthermore, we evaluated whether the mitochondrial function evaluated by high-resolution respirometry in PBMCs reflects corresponding alterations in the liver. Surprisingly, mitochondrial respiratory capacity was increased in PBMCs from rats with IDA compared to the controls. In contrast, mitochondrial respiration remained unaffected in livers from IDA rats. Of note, citrate synthase activity indicated an increased mitochondrial density in PBMCs, whereas it remained unchanged in the liver, partly explaining the different responses of mitochondrial respiration in PBMCs and the liver. Taken together, these results indicate that mitochondrial function determined in PBMCs cannot serve as a valid surrogate for respiration in the liver. Metabolic adaptions to iron deficiency resulted in different metabolic reprogramming in the blood cells and liver tissue.

2.
Free Radic Biol Med ; 158: 115-125, 2020 10.
Article in English | MEDLINE | ID: mdl-32702382

ABSTRACT

Peroxiredoxin 2 (Prdx2) and other typical 2-Cys Prdxs function as homodimers in which hydrogen peroxide oxidizes each active site cysteine to a sulfenic acid which then condenses with the resolving cysteine on the alternate chain. Previous kinetic studies have considered both sites as equally reactive. Here we have studied Prdx2 using a combination of non-reducing SDS-PAGE to separate reduced monomers and dimers with one and two disulfide bonds, and stopped flow analysis of tryptophan fluorescence, to investigate whether there is cooperativity between the sites. We have observed positive cooperativity when H2O2 is added as a bolus and oxidation of the second site occurs while the first site is present as a sulfenic acid. Modelling of this reaction showed that the second site reacts 2.2 ± 0.1 times faster. In contrast, when H2O2 was generated slowly and the first active site condensed to a disulfide before the second site reacted, no cooperativity was evident. Conversion of the sulfenic acid to the disulfide showed negative cooperativity, with modelling of the exponential rise in tryptophan fluorescence yielding a rate constant of 0.75 ± 0.08 s-1 when the alternate active site was present as a sulfenic acid and 2.29 ± 0.08-fold lower when it was a disulfide. No difference in the rate of hyperoxidation at the two sites was detected. Our findings imply that oxidation of one active site affects the conformation of the second site and influences which intermediate forms of the protein are favored under different cellular conditions.


Subject(s)
Cysteine , Peroxiredoxins , Catalytic Domain , Cysteine/metabolism , Hydrogen Peroxide , Kinetics , Oxidation-Reduction , Peroxiredoxins/metabolism
3.
Bioorg Med Chem Lett ; 30(16): 127350, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32631548

ABSTRACT

Identification of allosteric inhibitors of PTPs has attracted great interest as a new strategy to overcome the challenge of discover potent and selective molecules for therapeutic intervention. YopH is a virulence factor of the genus Yersinia, validated as an antimicrobial target. The finding of a second substrate binding site in YopH has revealed a putative allosteric site that could be further exploited. Novel chalcone compounds that inhibit PTPs activity were designed and synthesized. Compound 3j was the most potent inhibitor, interestingly, with different mechanisms of inhibition for the panel of enzymes evaluated. Further, our results showed that compound 3j is an irreversible non-competitive inhibitor of YopH that binds to a site different than the catalytic site, but close to the well-known second binding site of YopH.


Subject(s)
Bacterial Outer Membrane Proteins/antagonists & inhibitors , Chalcone/pharmacology , Enzyme Inhibitors/pharmacology , Protein Tyrosine Phosphatases/antagonists & inhibitors , Virulence Factors/antagonists & inhibitors , Allosteric Site/drug effects , Bacterial Outer Membrane Proteins/metabolism , Chalcone/chemical synthesis , Chalcone/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Molecular Structure , Protein Tyrosine Phosphatases/metabolism , Structure-Activity Relationship , Virulence Factors/metabolism
4.
Curr Top Med Chem ; 20(3): 173-181, 2020.
Article in English | MEDLINE | ID: mdl-31775599

ABSTRACT

BACKGROUND: Bacterial resistance to antibiotics is a growing problem in all countries and has been discussed worldwide. In this sense, the development of new drugs with antibiotic properties is highly desirable in the context of medicinal chemistry. METHODOLOGY: In this paper we investigate the antioxidant and antibacterial potential of sulfonamides derived from carvacrol, a small molecule with drug-like properties. Most sulfonamides had antioxidant and antibacterial potential, especially compound S-6, derived from beta-naphthylamine. RESULTS: To understand the possible mechanisms of action involved in biological activity, the experimental results were compared with molecular docking data. CONCLUSION: This research allows appropriate discussion on the identified structure activity relationships.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Cymenes/pharmacology , Molybdenum/chemistry , Sulfonamides/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Cymenes/chemistry , Dose-Response Relationship, Drug , Escherichia coli/drug effects , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Oxidation-Reduction , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
5.
Free Radic Biol Med ; 135: 227-234, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30862546

ABSTRACT

Peroxiredoxins (Prxs) are thiol peroxidases with a key role in antioxidant defense and redox signaling. They could be important in neutrophils for handling the large amount of oxidants that these cells produce. We investigated the redox state of Prx1 and Prx2 in HL-60 promyelocytic cells differentiated to neutrophil-like cells (dHL-60) and in human neutrophils. HL-60 cell differentiation with dimethyl sulfoxide caused a large decrease in expression of both Prxs, and all-trans retinoic acid also decreased Prx1 expression. Prx1 was mostly reduced in dHL-60 cells. NADPH oxidase activation by phorbol myristate acetate (PMA) or ingestion of Staphylococcus aureus induced rapid oxidation to disulfide-linked dimers, and eventually hyperoxidation. The NADPH oxidase inhibitor, diphenyleneiodonium, prevented Prx1 dimerization in stimulated dHL-60 cells, and decreased the extent of oxidation under resting conditions. In contrast, Prx1 and Prx2 were present in neutrophils from human blood as disulfides, and PMA or S. aureus caused no further oxidation. They remained oxidized on incubation with diphenyleneiodonium in media. Although this suggests that Prx redox cycling could be deficient in neutrophils, thioredoxin expression and thioredoxin reductase activity were similar in neutrophils and dHL-60 cells. Additionally, neutrophil thioredoxin was initially reduced and underwent oxidation after PMA activation. Thus, although the Prxs respond to oxidant generation in dHL-60 cells, in neutrophils they appear "locked" as disulfides. On this basis we propose that neutrophil Prxs are inefficient antioxidants and contribute little to peroxide removal during the oxidative burst, and speculate that they might be involved in other cell processes.


Subject(s)
Antioxidants/metabolism , Homeodomain Proteins/genetics , Oxidation-Reduction/drug effects , Gene Expression Regulation, Neoplastic/drug effects , HL-60 Cells , Homeodomain Proteins/antagonists & inhibitors , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Neutrophils/microbiology , Onium Compounds/pharmacology , Oxidants/metabolism , Signal Transduction/genetics , Staphylococcus aureus/metabolism , Staphylococcus aureus/pathogenicity , Tetradecanoylphorbol Acetate/toxicity
6.
Article in English | MEDLINE | ID: mdl-30445225

ABSTRACT

It has been reported that phaseolin, the major storage globulin of the common bean (Phaseolus vulgaris), is toxic to Callosobruchus maculatus larvae, an Old World bruchid beetle that is not capable of infesting this New World edible bean. It has also been demonstrated that vicilin, the major storage globulin found in cowpea (Vigna unguiculata) seeds, is absorbed through receptor-mediated endocytosis in the insect midgut. A putative vicilin receptor has been purified and showed high homology to α-tocopherol transfer protein. However, the ingestion of a variant vicilin purified from C. maculatus resistant seeds inhibits transcytosis, resulting in the accumulation of vicilins in the midgut cells and ultimately antibiosis. In the present work, we studied the cellular up-take of phaseolin in C. maculatus larvae with the aim of discovering if this protein is also capable of inhibiting endocytic traffic in the enterocytes. FITC-labelled vicilin and FITC-labelled phaseolin were incorporated into the diet of the larvae at a physiological concentration of 0.5% w/w. The fate of labelled and non-labelled globulins was monitored by confocal microscopy. Here we demonstrated that phaseolin is also endocytosed by enterocytes causing an accumulation of endocytic vesicles in the midgut when compared to the ingestion of vicilin obtained from a susceptible V. unguiculata cultivar. From the results obtained for HNE, MDA and TBARS, a pro-oxidative scenario was established in the intestinal epithelial cells of the larvae, which may explain the deleterious effect observed in larvae developing inside P. vulgaris seeds.


Subject(s)
Coleoptera/metabolism , Intestines , Oxidative Stress/drug effects , Plant Proteins/pharmacology , Secretory Vesicles/metabolism , Animals , Biological Transport, Active/drug effects , Larva
7.
Methods Mol Biol ; 1782: 31-70, 2018.
Article in English | MEDLINE | ID: mdl-29850993

ABSTRACT

Protocols for High-Resolution FluoRespirometry of intact cells, permeabilized cells, permeabilized muscle fibers, isolated mitochondria, and tissue homogenates offer sensitive diagnostic tests of integrated mitochondrial function using standard cell culture techniques, small needle biopsies of muscle, and mitochondrial preparation methods. Multiple substrate-uncoupler-inhibitor titration (SUIT) protocols for analysis of oxidative phosphorylation (OXPHOS) improve our understanding of mitochondrial respiratory control and the pathophysiology of mitochondrial diseases. Respiratory states are defined in functional terms to account for the network of metabolic interactions in complex SUIT protocols with stepwise modulation of coupling control and electron transfer pathway states. A regulated degree of intrinsic uncoupling is a hallmark of oxidative phosphorylation, whereas pathological and toxicological dyscoupling is evaluated as a mitochondrial defect. The noncoupled state of maximum respiration is experimentally induced by titration of established uncouplers (CCCP, FCCP, DNP) to collapse the protonmotive force across the mitochondrial inner membrane and measure the electron transfer (ET) capacity (open-circuit operation of respiration). Intrinsic uncoupling and dyscoupling are evaluated as the flux control ratio between non-phosphorylating LEAK respiration (electron flow coupled to proton pumping to compensate for proton leaks) and ET capacity. If OXPHOS capacity (maximally ADP-stimulated O2 flux) is less than ET capacity, the phosphorylation pathway contributes to flux control. Physiological substrate combinations supporting the NADH and succinate pathway are required to reconstitute tricarboxylic acid cycle function. This supports maximum ET and OXPHOS capacities, due to the additive effect of multiple electron supply pathways converging at the Q-junction. ET pathways with electron entry separately through NADH (pyruvate and malate or glutamate and malate) or succinate (succinate and rotenone) restrict ET capacity and artificially enhance flux control upstream of the Q-cycle, providing diagnostic information on specific ET-pathway branches. O2 concentration is maintained above air saturation in protocols with permeabilized muscle fibers to avoid experimental O2 limitation of respiration. Standardized two-point calibration of the polarographic oxygen sensor (static sensor calibration), calibration of the sensor response time (dynamic sensor calibration), and evaluation of instrumental background O2 flux (systemic flux compensation) provide the unique experimental basis for high accuracy of quantitative results and quality control in High-Resolution FluoRespirometry.


Subject(s)
Fluorometry/methods , Mitochondria, Muscle/metabolism , Oxidative Phosphorylation , Polarography/methods , Animals , Biopsy , Biopsy, Needle , Calibration , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Membrane Permeability , Cell Respiration , Electron Transport , Fluorometry/instrumentation , HEK293 Cells , Humans , Mice , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/pathology , Oxygen Consumption , Polarography/instrumentation
8.
Neurotoxicology ; 66: 107-120, 2018 05.
Article in English | MEDLINE | ID: mdl-29605442

ABSTRACT

The primary etiology of Parkinson's disease (PD) remains unclear, but likely reflects a combination of genetic and environmental factors. Exposure to some pesticides, including ziram (zinc dimethyldithiocarbamate), is a relevant risk factor for PD. Like some other environmental neurotoxicants, we hypothesized that ziram can enter the central nervous system from the nasal mucosa via the olfactory nerves. To address this issue, we evaluated the effects of 1, 2 or 4 days of intranasal (i.n., 1 mg/nostril/day) infusions of sodium dimethyldithiocarbamate (NaDMDC), a dimethyldithiocarbamate more soluble than ziram, on locomotor activity in the open field, neurological severity score and rotarod performance. We also addressed the effects of four daily i.n. NaDMDC infusions on olfactory bulb (OB) and striatal measures of cell death, reactive oxygen species (ROS), tyrosine hydroxylase, and the levels of dopamine, noradrenaline, serotonin, and their metabolites. A single i.n. administration of NaDMDC did not significantly alter the behavioral measures. Two consecutive days of i.n. NaDMDC administrations led to a transient neurological deficit that spontaneously resolved within a week. However, the i.n. infusions of NaDMDC for 4 consecutive days induced motor and neurological deficits for up to 7 days after the last NaDMDC administration and increased striatal TH immunocontent and dopamine degradation within a day of the last infusion. Pharmacological treatment with the anti-parkinsonian drugs l-DOPA and apomorphine improved the NaDMDC-induced locomotor deficits. NaDMDC increased serotonin levels and noradrenaline metabolism in the OB 24 h after the last NaDMDC infusion, ROS levels in the OB 2 h after the last infusion, and striatum 2 and 24 h after the last infusion. These results demonstrate, for the first time, that i.n. NaDMDC administration induces neurobehavioral and neurochemical impairments in mice. This accords with evidence that dimethyldithio-carbamate exposure increases the risk of PD and highlights the possibility that olfactory system could be a major route for NaDMDC entry to central nervous system.


Subject(s)
Corpus Striatum/drug effects , Dimethyldithiocarbamate/toxicity , Dopamine/metabolism , Motor Activity/drug effects , Olfactory Bulb/drug effects , Parkinson Disease, Secondary/metabolism , Administration, Intranasal , Animals , Corpus Striatum/metabolism , Dimethyldithiocarbamate/administration & dosage , Hypothermia/chemically induced , Male , Mice , Olfactory Bulb/metabolism , Oxidative Stress , Reactive Oxygen Species , Tyrosine 3-Monooxygenase
10.
Neurotox Res ; 31(4): 545-559, 2017 May.
Article in English | MEDLINE | ID: mdl-28155214

ABSTRACT

Research on Parkinson's disease (PD) and drug development is hampered by the lack of suitable human in vitro models that simply and accurately recreate the disease conditions. To counteract this, many attempts to differentiate cell lines, such as the human SH-SY5Y neuroblastoma, into dopaminergic neurons have been undertaken since they are easier to cultivate when compared with other cellular models. Here, we characterized neuronal features discriminating undifferentiated and retinoic acid (RA)-differentiated SH-SYSY cells and described significant differences between these cell models in 6-hydroxydopamine (6-OHDA) cytotoxicity. In contrast to undifferentiated cells, RA-differentiated SH-SY5Y cells demonstrated low proliferative rate and a pronounced neuronal morphology with high expression of genes related to synapse vesicle cycle, dopamine synthesis/degradation, and of dopamine transporter (DAT). Significant differences between undifferentiated and RA-differentiated SH-SY5Y cells in the overall capacity of antioxidant defenses were found; although RA-differentiated SH-SY5Y cells presented a higher basal antioxidant capacity with high resistance against H2O2 insult, they were twofold more sensitive to 6-OHDA. DAT inhibition by 3α-bis-4-fluorophenyl-methoxytropane and dithiothreitol (a cell-permeable thiol-reducing agent) protected RA-differentiated, but not undifferentiated, SH-SY5Y cells from oxidative damage and cell death caused by 6-OHDA. Here, we demonstrate that undifferentiated and RA-differentiated SH-SY5Y cells are two unique phenotypes and also have dissimilar mechanisms in 6-OHDA cytotoxicity. Hence, our data support the use of RA-differentiated SH-SY5Y cells as an in vitro model of PD. This study may impact our understanding of the pathological mechanisms of PD and the development of new therapies and drugs for the management of the disease.


Subject(s)
Antioxidants/metabolism , Cell Differentiation/drug effects , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Dopaminergic Neurons/physiology , Tretinoin/pharmacology , Cell Death/drug effects , Cells, Cultured , Dithiothreitol/pharmacology , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/metabolism , Humans , Hydrogen Peroxide , Oxidation-Reduction/drug effects , Oxidopamine/antagonists & inhibitors , Phosphines/pharmacology
11.
Mol Neurobiol ; 54(2): 1033-1045, 2017 03.
Article in English | MEDLINE | ID: mdl-26801190

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) is the most used animal model of multiple sclerosis (MS) for the development of new therapies. Dopamine receptors can modulate EAE and MS development, thus highlighting the potential use of dopaminergic agonists in the treatment of MS, which has been poorly explored. Herein, we hypothesized that pramipexole (PPX), a dopamine D2/D3 receptor-preferring agonist commonly used to treat Parkinson's disease (PD), would be a suitable therapeutic drug for EAE. Thus, we report the effects and the underlying mechanisms of action of PPX in the prevention of EAE. PPX (0.1 and 1 mg/kg) was administered intraperitoneally (i.p.) from day 0 to 40 post-immunization (p.i.). Our results showed that PPX 1 mg/kg prevented EAE development, abolishing EAE signs by blocking neuroinflammatory response, demyelination, and astroglial activation in spinal cord. Moreover, PPX inhibited the production of inflammatory cytokines, such as IL-17, IL-1ß, and TNF-α in peripheral lymphoid tissue. PPX was also able to restore basal levels of a number of EAE-induced effects in spinal cord and striatum, such as reactive oxygen species, glutathione peroxidase, parkin, and α-synuclein (α-syn). Thus, our findings highlight the usefulness of PPX in preventing EAE-induced motor symptoms, possibly by modulating immune cell responses, such as those found in MS and other T helper cell-mediated inflammatory diseases.


Subject(s)
Benzothiazoles/therapeutic use , Dopamine Agonists/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Receptors, Dopamine D2/agonists , Receptors, Dopamine D3/agonists , Animals , Benzothiazoles/pharmacology , Dopamine Agonists/pharmacology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Mice , Mice, Inbred C57BL , Pramipexole , Receptors, Dopamine D2/immunology , Receptors, Dopamine D3/immunology
12.
Sci Rep ; 5: 18302, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26673780

ABSTRACT

Neutrophil extracellular traps (NETs) extruded from neutrophils upon activation are composed of chromatin associated with cytosolic and granular proteins, which ensnare and kill microorganisms. This microbicidal mechanism named classical netosis has been shown to dependent on reactive oxygen species (ROS) generation by NADPH oxidase and also chromatin decondensation dependent upon the enzymes (PAD4), neutrophil elastase (NE) and myeloperoxidase (MPO). NET release also occurs through an early/rapid ROS-independent mechanism, named early/rapid vital netosis. Here we analyze the role of ROS, NE, MPO and PAD4 in the netosis stimulated by Leishmania amazonensis promastigotes in human neutrophils. We demonstrate that promastigotes induce a classical netosis, dependent on the cellular redox imbalance, as well as by a chloroamidine sensitive and elastase activity mechanism. Additionally, Leishmania also induces the early/rapid NET release occurring only 10 minutes after neutrophil-parasite interaction. We demonstrate here, that this early/rapid mechanism is dependent on elastase activity, but independent of ROS generation and chloroamidine. A better understanding of both mechanisms of NET release, and the NETs effects on the host immune system modulation, could support the development of new potential therapeutic strategies for leishmaniasis.


Subject(s)
Extracellular Traps/immunology , Leishmania/immunology , Neutrophils/immunology , Reactive Oxygen Species/immunology , Apoptosis/drug effects , Apoptosis/immunology , Cells, Cultured , Enzyme Inhibitors/pharmacology , Extracellular Traps/metabolism , Host-Parasite Interactions/immunology , Humans , Hydrolases/antagonists & inhibitors , Hydrolases/immunology , Hydrolases/metabolism , Leishmania/physiology , Leukocyte Elastase/antagonists & inhibitors , Leukocyte Elastase/immunology , Leukocyte Elastase/metabolism , Microscopy, Fluorescence , Mitochondria/drug effects , Mitochondria/immunology , Mitochondria/metabolism , NADPH Oxidases/antagonists & inhibitors , NADPH Oxidases/immunology , NADPH Oxidases/metabolism , Neutrophils/metabolism , Neutrophils/parasitology , Oxidation-Reduction/drug effects , Peroxidase/antagonists & inhibitors , Peroxidase/immunology , Peroxidase/metabolism , Protein-Arginine Deiminase Type 4 , Protein-Arginine Deiminases , Reactive Oxygen Species/metabolism , Time Factors
13.
Arch Virol ; 160(11): 2741-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26271152

ABSTRACT

Porcine circovirus-2 (PCV2) is the etiologic agent of several diseases in pigs, including multi-systemic wasting syndrome (PMWS). In this work, a new mutant PCV2b was isolated from PMWS-affected pigs on a Brazilian farm. Its genome showed high sequence similarity (>99% identity) to those from a group of emerging mutants isolated from cases of PMWS outbreaks in vaccinated pigs in China, the USA and South Korea. Here, we show that these isolates share a combination of low-frequency substitutions (single amino acid polymorphisms with a frequency of ≤25%) in the viral capsid protein, mainly in regions of immunoprotective epitopes, and an additional lysine residue at position 234. These isolates were phylogenetically grouped in the PCV2b clade, reinforcing the idea of the emergence of a new group of mutants PCV2b associated with outbreaks worldwide. The identification of these polymorphisms in the viral capsid highlights the importance of considering these isolates for the development of more-effective vaccines.


Subject(s)
Amino Acid Substitution , Capsid Proteins/genetics , Circoviridae Infections/veterinary , Circovirus/genetics , Epitopes/genetics , Porcine Postweaning Multisystemic Wasting Syndrome/virology , Amino Acid Sequence , Animals , Brazil , Capsid Proteins/chemistry , Capsid Proteins/immunology , Circoviridae Infections/virology , Circovirus/classification , Circovirus/immunology , Circovirus/isolation & purification , Epitopes/chemistry , Epitopes/immunology , Molecular Sequence Data , Phylogeny , Polymorphism, Single Nucleotide , Swine
14.
Biol Trace Elem Res ; 158(3): 399-409, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24723215

ABSTRACT

Manganese (Mn) exposure is related to industrial activities, where absorption by inhalation has high relevance. Manganism, a syndrome caused as a result of excessive accumulation of Mn in the central nervous system, has numerous symptoms similar to those seen in idiopathic Parkinson disease (IPD). Some of these symptoms, such as learning, memory, sensorial, and neurochemical changes, appear before the onset of motor deficits in both manganism and IPD. The aim of this study was to evaluate the possible neuroprotective effects of curcumin against behavioral deficits induced by Mn toxicity in young (2 months old) Swiss mice. We evaluated the effect of chronic inhalation of a Mn mixture [Mn(OAc)3 and MnCl2 (20:40 mM)], 1 h/session, three times a week, over a 14-week period on behavioral and neurochemical parameters. Curcumin was supplemented in the diet (500 or 1,500 ppm in food pellets). The Mn disrupted the motor performance evaluated in the single-pellet reach task, as well as the short- and long-term spatial memory evaluated in the step-down inhibitory avoidance task. Surprisingly, curcumin also produced similar deleterious effects in such behavioral tests. Moreover, the association of Mn plus curcumin significantly increased the levels of Mn and iron, and decreased the levels of dopamine and serotonin in the hippocampus. These alterations were not observed in the striatum. In conclusion, the current Mn treatment protocol resulted in mild deficits in motor and memory functions, resembling the early phases of IPD. Additionally, curcumin showed no beneficial effects against Mn-induced disruption of hippocampal metal and neurotransmitter homeostasis.


Subject(s)
Curcumin/pharmacology , Hippocampus/drug effects , Manganese/pharmacology , Metals/metabolism , Neurotransmitter Agents/metabolism , Acetates/administration & dosage , Acetates/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Chlorides/administration & dosage , Chlorides/pharmacology , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Curcumin/administration & dosage , Dopamine/metabolism , Dose-Response Relationship, Drug , Drug Interactions , Hippocampus/metabolism , Iron/metabolism , Male , Manganese/administration & dosage , Manganese/metabolism , Manganese Compounds/administration & dosage , Manganese Compounds/pharmacology , Memory/drug effects , Mice , Motor Activity/drug effects , Serotonin/metabolism
15.
Genome Announc ; 2(2)2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24652974

ABSTRACT

Three porcine circovirus-2 strains were isolated from pigs on a Brazilian farm during an outbreak, indicating a vaccine failure. They present identical genomic sequences, with high identities to other isolates that were also related to vaccination failures, supporting the recent theory about an antigen drift being associated with vaccine failures throughout the world.

16.
Int J Biochem Cell Biol ; 50: 156-60, 2014 May.
Article in English | MEDLINE | ID: mdl-24569121

ABSTRACT

Mitochondria are key regulators of cellular energy and redox metabolism, also playing a central role in cell signaling and death pathways. A number of processes occur within mitochondria, including redox-dependent ATP synthesis by oxidative phosphorylation and reactive oxygen species production. Mitochondrial permeability transition is a reversible process that may lead to cell death and is regulated by calcium and reactive oxygen species. Functional mitochondria are present in platelets, and evidence has demonstrated the direct involvement of these organelles in cellular ATP production, redox balance, as well as in platelet activation and apoptosis. Here, we review aspects of platelet physiology in which mitochondria are involved, as well as assess their function as new tools for studying a number of human diseases.


Subject(s)
Blood Platelets/physiology , Blood Platelets/ultrastructure , Mitochondria/physiology , Animals , Humans
17.
J Ethnopharmacol ; 145(3): 737-45, 2013 Feb 13.
Article in English | MEDLINE | ID: mdl-23237932

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tabebuia avellanedae Lorentz ex Griseb is a plant employed in tropical America folk medicine for the treatment of several diseases, including depressive disorders. AIM OF THE STUDY: To investigate the ability of Tabebuia avellanedae ethanolic extract (EET) administered chronically to cause an antidepressant-like effect in the tail suspension test (TST), a predictive test of antidepressant activity, and to reverse behavioral (hyperactivity, anhedonic-like behavior and increased immobility time in the TST) and biochemical changes induced by olfactory bulbectomy (OB), a model of depression, in mice. MATERIALS AND METHODS: Mice were submitted to OB to induce depressive-related behaviors, which were evaluated in the open-field test (hyperactivity), splash test (loss of motivational and self-care behavior indicative of an anhedonic-like behavior) and TST (increased immobility time). Phosphorylation levels of Akt, GSK-3ß, ERK1/2 and CREB, as well as BDNF immunocontent, were evaluated in the hippocampus of bulbectomized mice or sham-operated mice treated for 14 days by p.o. route with EET or vehicle. RESULTS: EET (10 and 30mg/kg) given 14 days by p.o route to mice reduced the immobility time in the TST without altering locomotor activity, an indicative of an antidepressant-like effect. EET per se increased both CREB (Ser(133)) and GSK-3ß (Ser(9)) phosphorylation (at doses of 10-30 and 30mg/kg, respectively) in sham-operated mice. OB caused hyperactivity, loss of motivational and self-care behavior, increased immobility time in the TST and an increase in CREB and ERK1 phosphorylation, as well as BDNF immunocontent. EET abolished all these OB-induced alterations except the increment of CREB phosphorylation. Akt (Ser(473)) and ERK2 phosphorylation levels were not altered in any group. CONCLUSIONS: EET ability to abolish the behavioral changes induced by OB was accompanied by modulation of ERK1 and BDNF signaling pathways, being a promising target of EET. Results indicate that this plant could constitute an attractive strategy for the management of depressive disorders, once more validating the traditional use of this plant.


Subject(s)
Antidepressive Agents/therapeutic use , Depression/drug therapy , Plant Extracts/therapeutic use , Tabebuia , Animals , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/metabolism , CREB-Binding Protein/metabolism , Depression/metabolism , Depression/physiopathology , Ethanol/chemistry , Female , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Hippocampus/drug effects , Hippocampus/metabolism , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Olfactory Bulb/surgery , Phytotherapy , Plant Bark , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Solvents/chemistry
18.
Avian Dis ; 57(4): 780-4, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24597121

ABSTRACT

Paramyxoviruses and avian influenza viruses are present worldwide, and wild birds are known natural reservoirs of these viruses. This study monitored the circulation of these viruses in migratory and resident coastal birds captured in the state of Rio de Janeiro, Brazil. In total, 494 birds were trapped, and their fecal samples were collected and inoculated into embryonated chicken eggs. The allantoic fluids were evaluated using a hemagglutination test and PCR amplification of the genes of the M and L proteins of influenza A virus and paramyxovirus, respectively. Avian paramyxovirus was detected in 5 (1.01%) of the birds. The majority of these viruses were isolated from migratory birds classified into the order Charadriiformes (families Scolopacidae and Charadriidae). Four samples were characterized as avian paramyxovirus serotype-2 (APMV-2) by a hemagglutination inhibition test. These results reinforce the importance of continuous surveillance of wild species in Brazil.


Subject(s)
Avulavirus Infections/veterinary , Avulavirus/isolation & purification , Bird Diseases/epidemiology , Animal Migration , Animals , Avulavirus Infections/epidemiology , Avulavirus Infections/virology , Bird Diseases/virology , Birds , Brazil/epidemiology , Feces/virology , Hemagglutination Tests/veterinary , Influenza A virus/isolation & purification , Influenza in Birds/epidemiology , Influenza in Birds/virology , Microscopy, Electron/veterinary , Ovum/virology , RNA, Viral/genetics , RNA, Viral/metabolism , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Seasons
19.
Crit Care Med ; 39(5): 1056-63, 2011 May.
Article in English | MEDLINE | ID: mdl-21336129

ABSTRACT

OBJECTIVE: Increasing evidence points to the role of mitochondrial dysfunction in the pathogenesis of sepsis. Previous data indicate that mitochondrial function is affected in monocytes from septic patients, but the underlying mechanisms and the impact of these changes on the patients' outcome are unknown. We aimed to determine the mechanisms involved in mitochondrial dysfunction in peripheral blood mononuclear cells from patients with septic shock. DESIGN: A cohort of patients with septic shock to study peripheral blood mononuclear cell mitochondrial respiration by high-resolution respirometry analyses and to compare with cells from control subjects. SETTING: Three intensive care units and an academic research laboratory. SUBJECTS: Twenty patients with septic shock and a control group composed of 18 postoperative patients without sepsis or shock. INTERVENTIONS: Ex vivo measurements of mitochondrial oxygen consumption were carried out in digitonin-permeabilized peripheral blood mononuclear cells from 20 patients with septic shock taken during the first 48 hrs after intensive care unit admission as well as in peripheral blood mononuclear cells from control subjects. Clinical parameters such as hospital outcome and sepsis severity were also analyzed and the relationship between these parameters and the oxygen consumption pattern was investigated. MEASUREMENTS AND MAIN RESULTS: We observed a significant reduction in the respiration specifically associated with adenosine-5'-triphosphate synthesis (state 3) compared with the control group (5.60 vs. 9.89 nmol O2/min/10(7) cells, respectively, p < .01). Reduction of state 3 respiration in patients with septic shock was seen with increased prevalence of organ failure (r = -0.46, p = .005). Nonsurviving patients with septic shock presented significantly lower adenosine diphosphate-stimulated respiration when compared with the control group (4.56 vs. 10.27 nmol O2/min/10(7) cells, respectively; p = .004). Finally, the presence of the functional F1Fo adenosine-5'-triphosphate synthase complex (0.51 vs. 1.00 ng oligo/mL/10(6) cells, p = .02), but not the adenine nucleotide translocator, was significantly lower in patients with septic shock compared with control cells. CONCLUSION: Mitochondrial dysfunction is present in immune cells from patients with septic shock and is characterized as a reduced respiration associated to adenosine-5'-triphosphate synthesis. The molecular basis of this phenotype involve a reduction of F1Fo adenosine-5'-triphosphate synthase activity, which may contribute to the energetic failure found in sepsis.


Subject(s)
Leukocytes, Mononuclear/cytology , Mitochondria/enzymology , Mitochondrial Proton-Translocating ATPases/metabolism , Shock, Septic/blood , Aged , Aged, 80 and over , Analysis of Variance , Case-Control Studies , Cells, Cultured , Energy Metabolism , Female , Humans , Intensive Care Units , Leukocytes, Mononuclear/physiology , Male , Middle Aged , Mitochondria/metabolism , Monocytes/cytology , Monocytes/physiology , Reference Values , Shock, Septic/enzymology
20.
Toxicol In Vitro ; 22(5): 1177-83, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18440196

ABSTRACT

Vitamin A (retinol) exerts a major role in several biological functions. However, it was observed that retinol induces oxidative stress on different cellular types. Catalase (EC 1.11.1.6; CAT) is a hydrogen peroxide metabolizing enzyme, and its activity and expression is widely used as an index to measure oxidative stress and perturbations in the cellular redox state. The aim of this study was to investigate the effects of retinol and its major biologically active metabolite, all-trans retinoic acid (RA), on CAT regulation. For this purpose, cultured Sertoli cells (a physiological target of vitamin A) were treated with retinol or RA. Retinol (7 microM, 14 microM) and RA (100 nM, 1 microM) enhanced intracellular reactive species production and increased CAT activity after 24 h of treatment. Retinol increased CAT immunocontent but did not alter CAT mRNA expression, while the increase in CAT activity by RA was not related to alterations in immunocontent or mRNA expression. In vitro incubation of purified CAT with retinol or RA did not alter enzyme activity.


Subject(s)
Antineoplastic Agents/toxicity , Catalase/metabolism , Sertoli Cells/drug effects , Tretinoin/toxicity , Vitamin A/toxicity , Vitamins/toxicity , Animals , Catalase/genetics , Cells, Cultured , Dose-Response Relationship, Drug , Free Radicals/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Male , Oxidative Stress/drug effects , RNA, Messenger/metabolism , Rats , Sertoli Cells/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...