Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 24(14): 12691-12699, 2017 May.
Article in English | MEDLINE | ID: mdl-28093675

ABSTRACT

The photocatalytic degradation of textile effluent was investigated using TiO2, ZnO, and Nb2O5 catalysts under solar irradiation. The procedures were carried out at ambient conditions in April 2014, with pH 3.0 and catalyst concentration of 0.250 g L-1. The photocatalytic activity of the oxides was evaluated by means of kinetic efficiency (rate constant and half-life time), chemical oxygen demand reduction, and absorbance reduction at 228, 254, 284, 310, 350, 500, and 660 nm (λmáx). Mineralization in terms of the formation of inorganic ions and toxicity reduction using bioassays with Artemia salina were performed. TiO2 reduced the absorbance at 660 nm (λmax) after 300 min of solar irradiation around 94 and 93%; and 68 and 60% of COD, respectively. ZnO showed lower photocatalytic activity giving 64 and 42% of absorbance and COD reduction, respectively. The photocatalytic activity of Nb2O5 was very close to TiO2-P25. In this sense, Nb2O5 becomes a promising alternative to replace the commercial TiO2-P25. Bioassays confirmed the efficacy of treatment, increasing the lethal concentration of 27.59 (in natura) to 131.95% in the presence of Nb2O5.


Subject(s)
Titanium/radiation effects , Water Pollutants, Chemical/radiation effects , Catalysis , Niobium , Oxides , Textiles
2.
Sci Total Environ ; 581-582: 1-9, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28068642

ABSTRACT

This study reports on the investigation of the photodegradation of biodiesel (B100) in contact with water using TiO2/H2O2. The TiO2 was characterized by X-ray diffraction analysis (XRD), pH point of zero charge (pHpzc) and textural analysis. The results of the experiments were fitted to a quadratic polynomial model developed using response surface methodology (RSM) to optimize the parameters. Using the three factors, three levels, and the Box-Behnken design of experiment technique, 15 sets of experiments were designed considering the effective ranges of the influential parameters. The responses of those parameters were optimized using computational techniques. After 24h of irradiation under an Hg vapor lamp, removal of 22.0% of the oils and greases (OG) and a 33.54% reduction in the total of fatty acid methyl ester (FAME) concentration was observed in the aqueous phase, as determined using gas chromatography coupled with flame ionization detection (GC/FID). The estimate of FAMEs undergo base-catalyzed hydrolysis is at least 3years (1095days) and after photocatalytic treatment using TiO2/H2O2, it was reduced to 33.54% of FAMEs in only 1day.

SELECTION OF CITATIONS
SEARCH DETAIL
...