Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Sci Rep ; 10(1): 8436, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32439843

ABSTRACT

Mineral contents in bovine muscle can affect meat quality, growth, health, and reproductive traits. To better understand the genetic basis of this phenotype in Nelore (Bos indicus) cattle, we analysed genome-wide mRNA and miRNA expression data from 114 muscle samples. The analysis implemented a new application for two complementary algorithms: the partial correlation and information theory (PCIT) and the regulatory impact factor (RIF), in which we included the estimated genomic breeding values (GEBVs) for the phenotypes additionally to the expression levels, originally proposed for these methods. We used PCIT to determine putative regulatory relationships based on significant associations between gene expression and GEBVs for each mineral amount. Then, RIF was adopted to determine the regulatory impact of genes and miRNAs expression over the GEBVs for the mineral amounts. We also investigated over-represented pathways, as well as pieces of evidences from previous studies carried in the same population and in the literature, to determine regulatory genes for the mineral amounts. For example, NOX1 expression level was positively correlated to Zinc and has been described as Zinc-regulated in humans. Based on our approach, we were able to identify genes, miRNAs and pathways not yet described as underlying mineral amount. The results support the hypothesis that extracellular matrix interactions are the core regulator of mineral amount in muscle cells. Putative regulators described here add information to this hypothesis, expanding the knowledge on molecular relationships between gene expression and minerals.


Subject(s)
Gene Expression Regulation , Gene Regulatory Networks , MicroRNAs/metabolism , Minerals/metabolism , Muscle, Skeletal/metabolism , Phenotype , RNA, Messenger/metabolism , Animals , Cattle , Genome , MicroRNAs/genetics , RNA, Messenger/genetics
3.
Front Genet ; 11: 189, 2020.
Article in English | MEDLINE | ID: mdl-32194642

ABSTRACT

Feed efficiency helps to reduce environmental impacts from livestock production, improving beef cattle profitability. We identified potential biomarkers (hub genes) for feed efficiency, by applying co-expression analysis in Longissimus thoracis RNA-Seq data from 180 Nelore steers. Six co-expression modules were associated with six feed efficiency-related traits (p-value ≤ 0.05). Within these modules, 391 hub genes were enriched for pathways as protein synthesis, muscle growth, and immune response. Trait-associated transcription factors (TFs) ELF1, ELK3, ETS1, FLI1, and TCF4, were identified with binding sites in at least one hub gene. Gene expression of CCDC80, FBLN5, SERPINF1, and OGN was associated with multiple feed efficiency-related traits (FDR ≤ 0.05) and were previously related to glucose homeostasis, oxidative stress, fat mass, and osteoblastogenesis, respectively. Potential regulatory elements were identified, integrating the hub genes with previous studies from our research group, such as the putative cis-regulatory elements (eQTLs) inferred as affecting the PCDH18 and SPARCL1 hub genes related to immune system and adipogenesis, respectively. Therefore, our analyses contribute to a better understanding of the biological mechanisms underlying feed efficiency in bovine and the hub genes disclosed can be used as biomarkers for feed efficiency-related traits in Nelore cattle.

4.
Front Genet ; 10: 651, 2019.
Article in English | MEDLINE | ID: mdl-31354792

ABSTRACT

Fatty acid (FA) content affects the sensorial and nutritional value of meat and plays a significant role in biological processes such as adipogenesis and immune response. It is well known that, in beef, the main FAs associated with these biological processes are oleic acid (C18:1 cis9, OA) and conjugated linoleic acid (CLA-c9t11), which may have beneficial effects on metabolic diseases such as type 2 diabetes and obesity. Here, we performed differential expression and co-expression analyses, weighted gene co-expression network analysis (WGCNA) and partial correlation with information theory (PCIT), to uncover the complex interactions between miRNAs and mRNAs expressed in skeletal muscle associated with FA content. miRNA and mRNA expression data were obtained from skeletal muscle of Nelore cattle that had extreme genomic breeding values for OA and CLA. Insulin and MAPK signaling pathways were identified by WGCNA as central pathways associated with both of these fatty acids. Co-expression network analysis identified bta-miR-33a/b, bta-miR-100, bta-miR-204, bta-miR-365-5p, bta-miR-660, bta-miR-411a, bta-miR-136, bta-miR-30-5p, bta-miR-146b, bta-let-7a-5p, bta-let-7f, bta-let-7, bta-miR 339, bta-miR-10b, bta-miR 486, and the genes ACTA1 and ALDOA as potential regulators of fatty acid synthesis. This study provides evidence and insights into the molecular mechanisms and potential target genes involved in fatty acid content differences in Nelore beef cattle, revealing new candidate pathways of phenotype modulation that could positively benefit beef production and human consumption.

5.
Sci Rep ; 8(1): 13747, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30213987

ABSTRACT

Transcription factors (TFs) are pivotal regulatory proteins that control gene expression in a context-dependent and tissue-specific manner. In contrast to human, where comprehensive curated TF collections exist, bovine TFs are only rudimentary recorded and characterized. In this article, we present a manually-curated compendium of 865 sequence-specific DNA-binding bovines TFs, which we analyzed for domain family distribution, evolutionary conservation, and tissue-specific expression. In addition, we provide a list of putative transcription cofactors derived from known interactions with the identified TFs. Since there is a general lack of knowledge concerning the regulation of gene expression in cattle, the curated list of TF should provide a basis for an improved comprehension of regulatory mechanisms that are specific to the species.


Subject(s)
DNA-Binding Proteins/genetics , Databases, Genetic , Gene Expression Regulation/genetics , Transcription Factors/genetics , Animals , Cattle , Humans
6.
G3 (Bethesda) ; 7(6): 1855-1859, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28391242

ABSTRACT

Nelore is the most economically important cattle breed in Brazil, and the use of genetically improved animals has contributed to increased beef production efficiency. The Brazilian beef feedlot industry has grown considerably in the last decade, so the selection of animals with higher growth rates on feedlot has become quite important. Genomic selection (GS) could be used to reduce generation intervals and improve the rate of genetic gains. The aim of this study was to evaluate the prediction of genomic-estimated breeding values (GEBV) for average daily weight gain (ADG) in 718 feedlot-finished Nelore steers. Analyses of three Bayesian model specifications [Bayesian GBLUP (BGBLUP), BayesA, and BayesCπ] were performed with four genotype panels [Illumina BovineHD BeadChip, TagSNPs, and GeneSeek High- and Low-density indicus (HDi and LDi, respectively)]. Estimates of Pearson correlations, regression coefficients, and mean squared errors were used to assess accuracy and bias of predictions. Overall, the BayesCπ model resulted in less biased predictions. Accuracies ranged from 0.18 to 0.27, which are reasonable values given the heritability estimates (from 0.40 to 0.44) and sample size (568 animals in the training population). Furthermore, results from Bos taurus indicus panels were as informative as those from Illumina BovineHD, indicating that they could be used to implement GS at lower costs.


Subject(s)
Breeding , Genome-Wide Association Study , Genome , Genomics/methods , Weight Gain/genetics , Animals , Brazil , Cattle , Genotype , Models, Genetic , Phenotype , Reproducibility of Results
7.
BMC Genomics ; 16: 242, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25887532

ABSTRACT

BACKGROUND: Efficiency of feed utilization is important for animal production because it can reduce greenhouse gas emissions and improve industry profitability. However, the genetic basis of feed utilization in livestock remains poorly understood. Recent developments in molecular genetics, such as platforms for genome-wide genotyping and sequencing, provide an opportunity to identify genes and pathways that influence production traits. It is known that transcriptional networks influence feed efficiency-related traits such as growth and energy balance. This study sought to identify differentially expressed genes in animals genetically divergent for Residual Feed Intake (RFI), using RNA sequencing methodology (RNA-seq) to obtain information from genome-wide expression profiles in the liver tissues of Nelore cattle. RESULTS: Differential gene expression analysis between high Residual Feed Intake (HRFI, inefficient) and low Residual Feed Intake (LRFI, efficient) groups was performed to provide insights into the molecular mechanisms that underlie feed efficiency-related traits in beef cattle. A total of 112 annotated genes were identified as being differentially expressed between animals with divergent RFI phenotypes. These genes are involved in ion transport and metal ion binding; act as membrane or transmembrane proteins; and belong to gene clusters that are likely related to the transport and catalysis of molecules through the cell membrane and essential mechanisms of nutrient absorption. Genes with functions in cellular signaling, growth and proliferation, cell death and survival were also differentially expressed. Among the over-represented pathways were drug or xenobiotic metabolism, complement and coagulation cascades, NRF2-mediated oxidative stress, melatonin degradation and glutathione metabolism. CONCLUSIONS: Our data provide new insights and perspectives on the genetic basis of feed efficiency in cattle. Some previously identified mechanisms were supported and new pathways controlling feed efficiency in Nelore cattle were discovered. We potentially identified genes and pathways that play key roles in hepatic metabolic adaptations to oxidative stress such as those involved in antioxidant mechanisms. These results improve our understanding of the metabolic mechanisms underlying feed efficiency in beef cattle and will help develop strategies for selection towards the desired phenotype.


Subject(s)
Cattle/genetics , Liver/metabolism , Meat , Transcriptome , Animal Feed , Animals , Cattle/metabolism , Digestion , Meat/economics , Phenotype
8.
Genet Sel Evol ; 47: 15, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25880074

ABSTRACT

BACKGROUND: Beef cattle require dietary minerals for optimal health, production and reproduction. Concentrations of minerals in tissues are at least partly genetically determined. Mapping genomic regions that affect the mineral content of bovine longissimus dorsi muscle can contribute to the identification of genes that control mineral balance, transportation, absorption and excretion and that could be associated to metabolic disorders. METHODS: We applied a genome-wide association strategy and genotyped 373 Nelore steers from 34 half-sib families with the Illumina BovineHD BeadChip. Genome-wide association analysis was performed for mineral content of longissimus dorsi muscle using a Bayesian approach implemented in the GenSel software. RESULTS: Muscle mineral content in Bos indicus cattle was moderately heritable, with estimates ranging from 0.29 to 0.36. Our results suggest that variation in mineral content is influenced by numerous small-effect QTL (quantitative trait loci) but a large-effect QTL that explained 6.5% of the additive genetic variance in iron content was detected at 72 Mb on bovine chromosome 12. Most of the candidate genes present in the QTL regions for mineral content were involved in signal transduction, signaling pathways via integral (also called intrinsic) membrane proteins, transcription regulation or metal ion binding. CONCLUSIONS: This study identified QTL and candidate genes that affect the mineral content of skeletal muscle. Our findings provide the first step towards understanding the molecular basis of mineral balance in bovine muscle and can also serve as a basis for the study of mineral balance in other organisms.


Subject(s)
Cattle/genetics , Genome-Wide Association Study/methods , Minerals/analysis , Muscle, Skeletal/chemistry , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animals , Bayes Theorem , Cattle/metabolism , Chromosome Mapping , Computer Simulation , Genomics/methods , Genotype , Minerals/metabolism , Muscle, Skeletal/metabolism , Phenotype
9.
Physiol Genomics ; 45(24): 1215-21, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24151244

ABSTRACT

The potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) gene was investigated as a candidate for meat tenderness based on the effects reported on muscle for KCNJ11 gene knockout in rat models and its position in a quantitative trait locus (QTL) for meat tenderness in the bovine genome. Sequence variations in the KCNJ11 gene were described by sequencing six amplified fragments, covering almost the entire gene. We identified single nucleotide polymorphisms (SNP) and validated them by different approaches, taking advantage of simultaneous projects that are being developed with the same Nelore population. By sequencing the KCNJ11 in Nelore steers representing extreme phenotypes for Warner-Bratzler shear force (WBSF), it was possible to identify 22 SNPs. We validated two of the identified markers by genotyping the whole population (n = 460). Analysis of association between genotypes and WBSF values revealed a significant additive effect of a SNP at different meat aging times (P ≤ 0.05). In addition, an association between the expression levels of KCNJ11 and WBSF was found, with lower expression levels of KCNJ11 associated with more tender meat (P ≤ 0.05). The results showed that the KCNJ11 gene is a candidate mapped to a QTL for meat tenderness previously identified on BTA15 and may be useful to identify animals with genetic potential to produce tender meat. The effect of KCNJ11 observed on muscle is potentially due to changes in activity of KATP channels, which in turn influence the flow of potassium in the intracellular space, allowing establishment of the membrane potential necessary for muscle contraction.


Subject(s)
Meat Products , Muscle, Skeletal , Potassium Channels, Inwardly Rectifying/genetics , Animals , Base Sequence , Cattle , DNA Primers , Polymorphism, Single Nucleotide , Quantitative Trait Loci
10.
Reprod Fertil Dev ; 22(6): 1041-8, 2010.
Article in English | MEDLINE | ID: mdl-20591338

ABSTRACT

Trichostatin A (TSA) induces histone hyperacetylation by inhibiting histone deacetylases and consequently increasing gene expression. The hypothesis was that TSA supplementation during the in vitro culture (IVC) of bovine embryos would increase the blastocyst rate, particularly in low-quality and female embryos. Oocytes were fertilised separately with X and Y spermatozoa and, 70 h after IVF, the IVC medium was supplemented with 5 nM and 15 nM TSA for 48 or 144 h. Incubation of female embryos with 5 nM and 15 nM TSA resulted in similar increases in acetylated histone H3K9 levels. However, to see comparable effects on acetylated histone H3K9 levels in male embryos, the culture medium needed to be supplemented with 15 nM TSA (as opposed to 5 nM TSA for female embryos). Treatment of male and female embryos with 5 nM TSA for 48 h or female embryos with 5 nM for 144 h had no effect on blastocyst rates, although 15 nM TSA compromised embryonic development. The terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) assay revealed increased apoptosis in female embryos treated with 5 nM TSA for 144 h, as well as in male and female embryos treated with 15 nM TSA for 48 h, but this increase in apoptosis was not observed in low-quality embryos. The results of the present study suggest that TSA treatment promotes histone hyperacetylation, but has no beneficial effects on the in vitro production of male and female bovine embryos during preimplantation development.


Subject(s)
Blastocyst/metabolism , Embryonic Development/physiology , Histones/metabolism , Acetylation/drug effects , Analysis of Variance , Animals , Apoptosis/drug effects , Apoptosis/physiology , Blastocyst/drug effects , Cattle , Embryo Culture Techniques , Embryonic Development/drug effects , Female , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Immunohistochemistry , In Situ Nick-End Labeling , Male , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...