Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
J Invertebr Pathol ; 118: 66-70, 2014 May.
Article in English | MEDLINE | ID: mdl-24590109

ABSTRACT

The Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) has been used as a biopesticide since the early 1980s in Brazil to control the major pest of soybean crops, the velvetbean caterpillar, Anticarsia gemmatalis. To monitor the genetic diversity over space and time we sequenced four pif genes (pif1, pif2, pif3 and pif4) from AgMNPV isolates collected from different regions of South America, as well as of seasonal isolates, sampled during a two-decade field experiment. Although all genes presented low levels of polymorphism, the pif-2 carries a slightly higher number of polymorphic sites. Overall, this study reveals that pif genes have remained stable after 20 years of repeated field application.


Subject(s)
Genes, Viral/genetics , Nucleopolyhedroviruses/genetics , Virulence Factors/genetics , Pest Control, Biological , Polymorphism, Single Nucleotide , Reverse Transcriptase Polymerase Chain Reaction
2.
Virus Genes ; 43(3): 471-5, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21720731

ABSTRACT

The baculovirus Condylorrhiza vestigialis multiple nucleopolyhedrovirus (CoveMNPV), isolated from C. vestigialis infected larvae in Paraná (Brazil), was identified in our laboratory. A full-length clone was obtained from the CoveMNPV genome, of the gene that encodes the homolog to baculoviral p74, essential for oral infectivity which was then sequenced and characterized. The CoveMNPV p74 gene (GenBank accession number EU919397) contains an ORF of 1935 bp that encodes a deduced protein of 73.61 kDa. The phylogenetic affiliations of the CoveMNPV gene were determined by a heuristic search of 40 aligned baculovirus p74 nucleotide sequences using maximum parsimony (PAUP 4.0b4a). The phylogenetic analysis placed CoveMNPV within lepidopteran nucleopolyhedrovirus (NPV) Group I, Clade A, as being the closest to Choristoneura fumiferana defective NPV.


Subject(s)
Moths/virology , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/isolation & purification , Viral Envelope Proteins/genetics , Animals , Molecular Sequence Data , Nucleopolyhedroviruses/classification , Phylogeny , Viral Envelope Proteins/metabolism
3.
J Invertebr Pathol ; 102(2): 149-54, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19651137

ABSTRACT

A baculovirus was isolated from larvae of Condylorrhiza vestigialis (Guenée) (Lepidoptera: Crambidae), a pest of a forest species known as Poplar (family Salicaceae, genus: Populus) with high economic value. Electron microscopy analysis of the occlusion body obtained from diseased larvae showed polyhedra containing multiple nucleocapsids per envelope. This baculovirus was thus named Condylorrhiza vestigialis multiple nucleopolyhedrovirus (CoveMNPV) and characterized by its DNA restriction endonuclease pattern, polyhedral protein, viral protein synthesis, and infectivity in insect cell lines. Restriction endonuclease profiles of viral DNA digested with five restriction enzymes were obtained and the CoveMNPV genome size was estimated to be 81+/-2.5 kbp. The isolation of the polyhedra (OBs) was done from the crude extract of infected larvae by ultracentrifugation through sucrose gradients. These viral particles were analyzed by denaturing polyacrylamide gel electrophoresis (SDS-PAGE), which showed a strong band with approximately 33 kDa, corresponding to the main protein of the occlusion bodies (polyhedrin). Also, a similar band was observed for CoveMNPV infected Spodoptera frugiperda cells (SF-21 AE) pulse-labeled with [(35)S] methionine and fractionated by SDS-PAGE. Of the four insect cell lines tested for susceptibility to CoveMNPV infection, the SF-21 AE was the most susceptible with occlusion bodies produced in most of the inoculated cells. This is the first record of an NPV from C. vestigialis.


Subject(s)
Larva/virology , Moths/virology , Nucleopolyhedroviruses/isolation & purification , Plant Diseases/parasitology , Animals , Cell Line , DNA, Viral/analysis , Genes, Viral , Insect Control , Larva/ultrastructure , Moths/ultrastructure , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/pathogenicity , Nucleopolyhedroviruses/ultrastructure , Occlusion Body Matrix Proteins , Pest Control, Biological , Populus , Viral Structural Proteins/analysis , Viral Structural Proteins/genetics
4.
J Invertebr Pathol ; 100(3): 153-9, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19135449

ABSTRACT

Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV) has been widely used to control the velvetbean caterpillar, Anticarsia gemmatalis, in Brazil. To date, AgMNPV has been produced by larval infection and, due to in vivo production limitations and the continuing high demand for the biopesticide, attempts should be made to develop in vitro production of this virus. In order to investigate the effects caused by serial passage of AgMNPV in cell culture, we carried out a total of ten passages and analyzed the morphological and the genomic changes of the virus. After six passages, the many-polyhedra (MP) phenotype started to switch to the few-polyhedra (FP) phenotype which rapidly accumulated in the virus population. Ultrastructural analysis showed typical signs of FP mutant formation such as decrease in the number of polyhedra per cell, polyhedra aberrant morphology and low numbers of virions occluded in the protein matrix. Also enhanced BV production was observed from the fifth passage indicating that FP mutants were becoming predominant in comparison to the wild type virus. Restriction endonuclease analysis of the viral DNA revealed that lower and higher passages had similar profiles indicating that there were no large insertions or deletions or rearrangements in their genomes and indicating the generation of FP mutants instead of defective interfering viruses.


Subject(s)
DNA, Viral/genetics , Nucleopolyhedroviruses/genetics , Animals , Cells, Cultured , Lepidoptera/virology , Microscopy, Electron, Transmission , Mutation , Nucleopolyhedroviruses/ultrastructure , Pest Control, Biological/methods
5.
Cytotechnology ; 48(1-3): 27-39, 2005 Jun.
Article in English | MEDLINE | ID: mdl-19003030

ABSTRACT

We have studied parameters for optimizing the Spodoptera frugiperda (Sf9) cell culture and viral infection for the production of Anticarsia gemmatalis multiple nucleopolyhedrosis virus (AgMNPV) polyhedra inclusion bodies (PIBs) in shaker-Schott or spinner bottles and bioreactors. We have assayed the k(L)a of the systems, initial cell seeding, cell culture volume, dissolved oxygen (DO), multiplicity of infection (MOI), nutrients consumption, and metabolites production. The medium surface oxygen transfer was shown to be higher in shaker bottles than in spinner ones, which was in direct correlation to the higher cell density obtained. Best quantitative performances of PIBs production were obtained with a SF900II medium volume/shaker-bottle volume ratio of 15% and MOI of 0.5 to 1 performed at a cell concentration at infection (CCI) of 1 to 2.5x10(6) cells/ml in a medium containing enough glucose and glutamine. Upon infection, a decrease in the cell multiplication was observed to be dependent on the MOI used, and the muX at the exponential growth phase in infected and non-infected cultures were, respectively, of 0.2832 and 0.3914 (day(-1)). The glucose consumption and lactate production were higher in the infected cultures (muGlucose and muLactate of, respectively, 0.0248 and 0.0089x10(-8) g/cellxday in infected cultures and 0.0151 and 0.0046x10(-8) g/cellxday in non infected ones). The glutamine consumption did not differ in both cultures (muGlutamine of 0.0034 and 0.0037x10(-8) g/cellxday in, respectively, infected and non infected cultures). When a virus MOI of 0.1 to 1 was used for infection, a higher concentration of PIBs/ml was obtained. This was in direct correlation to a higher cell concentration present in these cultures, where a decrease in cell multiplication due to virus infection is minimized. When a MOI of 1 was used, a more effective decrease in cell multiplication was observed and a lower concentration of PIBs/ml was obtained, but with the best performance of PIBs/cell. Correlations between MOI and CCI indicate that a MOI 0.1 to 1.4 and a CCI of 10(6) to 2x10(6) cells/ml led to the best PIBs production performances. The virulence of PIBs produced in cultures infected at low or high MOI showed comparable DL(50). Culture and infection in scaling-up conditions, performed in a bioreactor, were shown to provide the cells with a better environment and be capable of potentially improving the shaker-Schott findings. For an accurate qualitative control of PIB virulence, hemolymph from AgMNPV infected Anticarsia gemmatalis was used as starting material for passages in Sf9 cells. These led to a loss of virulence among the PIBs with an increase in the DL(50). The loss of virulence was accompanied by a loss in budded virus titer, a decreased number of PIBs produced and an altered DNA restriction pattern, suggesting the generation of defective interference particles (DIPs). Transmission electron microscopy (TEM) studies revealed that after cell passages, PIBs lacking virions were progressively synthesized. The study described here point out the biological constraints and bioprocess issues for the preparation of AgMNPV PIBs for biological control.

SELECTION OF CITATIONS
SEARCH DETAIL
...