Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Meas ; 39(10): 104007, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30376452

ABSTRACT

OBJECTIVE: Measurement of skin temperature using infrared thermography has become popular in sports, and has been proposed as an indicator of exercise-induced muscle damage after exercise. However, the relationship between skin temperature and exercise-induced muscle damage is still unclear. Here we set out to investigate the relationship between skin temperature and exercise-induced muscle damage. APPROACH: Twenty untrained participants completed a protocol of exercise for calf muscles. Before and after exercise blood samples were collected to determine creatine kinase and acetylcholinesterase activity. Thermal images were recorded from the exercised muscles to determine skin temperature. Delayed onset muscle soreness was quantified. Correlations between skin temperature and exercise-induced muscle damage were analyzed considering thermal data, creatine kinase and acetylcholinesterase activity at different time moments. MAIN RESULTS: We found delayed onset muscle soreness and an increased creatine kinase activity 48 h after exercise (P < 0.01). Skin temperature parameters (average, maximal, amplitude and difference pre- and post-exercise, immediately after and 48 h after) did not correlate with the creatine kinase responses (P > 0.05). Acetylcholinesterase activity remained stable (P = 0.59). SIGNIFICANCE: We recommend caution when considering changes in skin temperature as dependent on the level of localized and symmetric muscle damage considering calf muscles in untrained participants.


Subject(s)
Exercise , Muscle, Skeletal/physiopathology , Skin Temperature , Acetylcholinesterase/blood , Creatine Kinase/blood , Exercise/physiology , Humans , Infrared Rays , Lower Extremity , Male , Muscle, Skeletal/injuries , Myalgia/etiology , Myalgia/physiopathology , Skin Temperature/physiology , Thermography , Young Adult
2.
Front Physiol ; 9: 1137, 2018.
Article in English | MEDLINE | ID: mdl-30174618

ABSTRACT

A main implication of cumulative fatigue is the muscle damage that impairs neuromuscular function and training adaptations. These negative effects may limit performance when athletes exercise in consecutive days. In this regard, antioxidant supplementation has gain popularity among athletes. Green tea supplementation has been advocated as a strategy to improve exercise recovery due to the activity of its catechins with high antioxidant and anti-inflammatory potential. Here we performed a triple blinded placebo control experiment to determine the effect of green tea extract (GTE) from Camellia sinensis on muscle damage, oxidative stress, and neuromuscular activity in athletes submitted to consecutive sessions of exercise and fatigue. Sixteen trained amateur male athletes were randomly assigned to a GTE supplemented (500 mg/day) or placebo group during 15 days. Effects of supplementation were tested during repeated trials of submaximal cycling at 60% of peak power output performed after a protocol for cumulative fatigue of knee extensors. Muscle damage and oxidative stress showed lower magnitudes in response to fatigue after GTE supplementation. Placebo group showed impaired neuromuscular activity and higher muscle damage and oxidative stress compared to the GTE group during the cycling trials under fatigue. In summary, GTE supplementation showed positive effects on neuromuscular function in response to a condition of cumulative fatigue. It suggests GTE supplementation may have potential to serve as a strategy to improve performance and recovery in conditions of cumulative exercise.

3.
Physiol Behav ; 194: 77-82, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29746891

ABSTRACT

Previous studies addressed the antioxidant and anti-inflammatory role of compounds from green tea in different human tissues. Positive antioxidant and anti-inflammatory effects were described for brain tissues. Whether similar effects are observed in the skeletal muscle, green tea supplementation could be a strategy to reduce delayed onset muscle soreness resultant of exercise. Here we determine the effect of green tea extract supplementation on exercise-induced muscle soreness, muscle damage and oxidative stress. We performed a randomized triple blind placebo control study. Twenty non-trained men performed sessions of exercise to induce delayed onset muscle soreness in the triceps sural muscle group before and after 15 days of supplementation (500 mg/day) with green tea extract (n = 10) or a placebo (n = 10). Muscle soreness was evaluated using a visual scale. Blood samples were taken at different moments to determine serum blood markers of muscle damage, oxidative stress and antioxidant status. We found that exercise induced delayed onset muscle soreness. Supplementation reduced muscle damage but muscle soreness did not change. Plasma oxidative damage marker and antioxidant status did not show an effect of supplementation. As a conclusion, green tea extract supplementation did not reduce the sensation of delayed onset muscle soreness but reduces the marker of muscle damage after exercise. It suggests the green tea extract supplementation has positive effects on muscle recovery after strenuous exercise.


Subject(s)
Exercise , Muscle, Skeletal/injuries , Myalgia/prevention & control , Plant Extracts/therapeutic use , Tea , Acetylcholinesterase/blood , Adult , Antioxidants/metabolism , Creatine Kinase/blood , Dietary Supplements , Double-Blind Method , Glutathione/blood , Humans , L-Lactate Dehydrogenase/blood , Male , Oxidative Stress/drug effects , Pain Measurement , Reactive Oxygen Species/blood , Serum/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Time Factors , Young Adult
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 45-48, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28268277

ABSTRACT

Postural instability affects a large number of people and can compromise even simple activities of the daily routine. Therapies for balance training can strongly benefit from auxiliary devices specially designed for this purpose. In this paper, we present a system for balance training that uses the metaphor of a game, what contributes to the motivation and engagement of the patients during a treatment. Such approach is usually named exergame, in which input devices for posturographic assessment and a visual output perform the interaction with the subject. The proposed system uses two force platforms, one positioned under the feet and the other under the hip of the subject. The force platforms employ regular load cells and a microcontroller-based signal acquisition module to capture and transmit the samples to a computer. Moreover, a computer vision module performs body key-point detection, based on real time segmentation of markers attached to the subject. For the validation of the system, we conducted experiments with 20 neurologically intact volunteers during two tests: comparison of the stabilometric parameters obtained from the system with those obtained from a commercial baropodometer and the practice of several exergames. Results show that the proposed system is completely functional and can be used as a versatile tool for balance training.


Subject(s)
Exercise , Physical Therapy Modalities/instrumentation , Postural Balance/physiology , Adult , Aged , Equipment Design , Exercise/physiology , Exercise/psychology , Foot , Humans , Middle Aged , Motivation , Reproducibility of Results
5.
PLoS One ; 8(10): e78332, 2013.
Article in English | MEDLINE | ID: mdl-24205200

ABSTRACT

BACKGROUND AND AIMS: Glutaric aciduria type I (GA-I) is characterized by accumulation of glutaric acid (GA) and neurological symptoms, such as cognitive impairment. Although this disease is related to oxidative stress and inflammation, it is not known whether these processes facilitate the memory impairment. Our objective was to investigate the performance of rat pups chronically injected with GA and lipopolysaccharide (LPS) in spatial memory test, antioxidant defenses, cytokines levels, Na+, K+-ATPase activity, and hippocampal volume. We also evaluated the effect of N-acetylcysteine (NAC) on theses markers. METHODS: Rat pups were injected with GA (5 umol g of body weight-1, subcutaneously; twice per day; from 5th to 28th day of life), and were supplemented with NAC (150 mg/kg/day; intragastric gavage; for the same period). LPS (2 mg/kg; E.coli 055 B5) or vehicle (saline 0.9%) was injected intraperitoneally, once per day, from 25th to 28th day of life. Oxidative stress and inflammatory biomarkers as well as hippocampal volume were assessed. RESULTS: GA caused spatial learning deficit in the Barnes maze and LPS potentiated this effect. GA and LPS increased TNF-α and IL-1ß levels. The co-administration of these compounds potentiated the increase of IL-1ß levels but not TNF-α levels in the hippocampus. GA and LPS increased TBARS (thiobarbituric acid-reactive substance) content, reduced antioxidant defenses and inhibited Na+, K+-ATPase activity. GA and LPS co-administration did not have additive effect on oxidative stress markers and Na+, K+ pump. The hippocampal volume did not change after GA or LPS administration. NAC protected against impairment of spatial learning and increase of cytokines levels. NAC Also protected against inhibition of Na+,K+-ATPase activity and oxidative markers. CONCLUSIONS: These results suggest that inflammatory and oxidative markers may underlie at least in part of the neuropathology of GA-I in this model. Thus, NAC could represent a possible adjuvant therapy in treatment of children with GA-I.


Subject(s)
Acetylcysteine/pharmacology , Animals, Newborn/metabolism , Glutarates/adverse effects , Glutarates/metabolism , Lipopolysaccharides/adverse effects , Memory Disorders/drug therapy , Spatial Memory/drug effects , Animals , Antioxidants/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Interleukin-1beta/metabolism , Male , Memory Disorders/metabolism , Rats , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/metabolism , Tumor Necrosis Factor-alpha/metabolism
6.
Article in English | MEDLINE | ID: mdl-24111085

ABSTRACT

The lack of perception in the hindfoot increases the plantar flexion, causing irregular posture due to the foot position, a disability known as equinus foot deformity. A portable device, named baropodometer, that measures the pressure at the forefoot and hindfoot regions was built to help this population in terms of balance and posture correction. Ten hemiparetic teenager volunteers with equinus foot participated in the experiments. The results demonstrated that the proposed device increased the weight-bearing in upright stance in the paretic side, decreasing the weight in the non-paretic side. After 10 experimental sessions, performed along 6 months, the distribution of the pressure in the lower limbs was very similar. The baropodometer facilitates the rehabilitation, by biofeedbacking the pressure of the calcaneus, using the volunteer's audiovisual system. The rehabilitation using the proposed device was able to recover the balance by posture correction, facilitating future gait training of these volunteers.


Subject(s)
Biofeedback, Psychology/instrumentation , Biofeedback, Psychology/methods , Equinus Deformity/rehabilitation , Adolescent , Child , Foot/physiopathology , Humans , Male , Posture , Pressure , Signal Processing, Computer-Assisted , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...