Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38544182

ABSTRACT

Orthogonal Frequency Division Multiplexing (OFDM) is the modulation technology used in Fourth Generation (4G) and Fifth Generation (5G) wireless communication systems, and it will likely be essential to Sixth Generation (6G) wireless communication systems. However, OFDM introduces a high Peak to Average Power Ratio (PAPR) in the time domain due to constructive interference among multiple subcarriers, increasing the complexity and cost of the amplifiers and, consequently, the cost and complexity of 6G networks. Therefore, the development of new solutions to reduce the PAPR in OFDM systems is crucial to 6G networks. The application of Machine Learning (ML) has emerged as a promising avenue for tackling PAPR issues. Along this line, this paper presents a comprehensive review of PAPR optimization techniques with a focus on ML approaches. From this survey, it becomes clear that ML solutions offer customized optimization, effective search space navigation, and real-time adaptability. In light of the demands of evolving 6G networks, integration of ML is a necessity to propel advancements and meet increasing prerequisites. This integration not only presents possibilities for PAPR reduction but also calls for continued exploration to harness its potential and ensure efficient and reliable communication within 6G networks.

2.
Sensors (Basel) ; 19(4)2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30813313

ABSTRACT

Wireless Sensors Networks (WSNs) are an essential element of the Internet of Things (IoT), and are the main producers of big data. Collecting a huge amount of data produced by a resource-constrained network is a very difficult task, presenting several challenges. Big data gathering involves not only periodic data sensing, but also the forwarding of queries and commands to the network. Conventional network protocols present unfeasible strategies for large-scale networks and may not be directly applicable to IoT environments. Information-Centric Networking is a revolutionary paradigm that can overcome such big data gathering challenges. In this work, we propose a soft-state information-centric protocol, ICENET (Information Centric protocol for sEnsor NETworks), for big data gathering in large-scale WSNs. ICENET can efficiently propagate user queries in a wireless network by using a soft-state recovery mechanism for lossy links. The scalability of our solution is evaluated in different network scenarios. Results show that the proposed protocol presents approximately 84% less overhead and a higher data delivery rate than the CoAP (Constrained Application Protocol), which is a popular protocol for IoT environments.

3.
Cognit Comput ; 10(5): 790-804, 2018.
Article in English | MEDLINE | ID: mdl-30363787

ABSTRACT

Due to the unpredictability of natural disasters, whenever a catastrophe happens, it is vital that not only emergency rescue teams are prepared, but also that there is a functional communication network infrastructure. Hence, in order to prevent additional losses of human lives, it is crucial that network operators are able to deploy an emergency infrastructure as fast as possible. In this sense, the deployment of an intelligent, mobile, and adaptable network, through the usage of drones-unmanned aerial vehicles-is being considered as one possible alternative for emergency situations. In this paper, an intelligent solution based on reinforcement learning is proposed in order to find the best position of multiple drone small cells (DSCs) in an emergency scenario. The proposed solution's main goal is to maximize the amount of users covered by the system, while drones are limited by both backhaul and radio access network constraints. Results show that the proposed Q-learning solution largely outperforms all other approaches with respect to all metrics considered. Hence, intelligent DSCs are considered a good alternative in order to enable the rapid and efficient deployment of an emergency communication network.

4.
Sensors (Basel) ; 17(4)2017 Mar 31.
Article in English | MEDLINE | ID: mdl-28362314

ABSTRACT

Underwater acoustic networks (UAN) allow for efficiently exploiting and monitoring the sub-aquatic environment. These networks are characterized by long propagation delays, error-prone channels and half-duplex communication. In this paper, we address the problem of energy-efficient communication through the use of optimized channel coding parameters. We consider a two-layer encoding scheme employing forward error correction (FEC) codes and fountain codes (FC) for UAN scenarios without feedback channels. We model and evaluate the energy consumption of different channel coding schemes for a K-distributed multipath channel. The parameters of the FEC encoding layer are optimized by selecting the optimal error correction capability and the code block size. The results show the best parameter choice as a function of the link distance and received signal-to-noise ratio.

5.
Sensors (Basel) ; 15(1): 1518-36, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25594593

ABSTRACT

Monitoring and data collection are the two main functions in wireless sensor networks (WSNs). Collected data are generally transmitted via multihop communication to a special node, called the sink. While in a typical WSN, nodes have a sink node as the final destination for the data traffic, in an ad hoc network, nodes need to communicate with each other. For this reason, routing protocols for ad hoc networks are inefficient for WSNs. Trees, on the other hand, are classic routing structures explicitly or implicitly used in WSNs. In this work, we implement and evaluate distributed algorithms for constructing routing trees in WSNs described in the literature. After identifying the drawbacks and advantages of these algorithms, we propose a new algorithm for constructing spanning trees in WSNs. The performance of the proposed algorithm and the quality of the constructed tree were evaluated in different network scenarios. The results showed that the proposed algorithm is a more efficient solution. Furthermore, the algorithm provides multiple routes to the sensor nodes to be used as mechanisms for fault tolerance and load balancing.

SELECTION OF CITATIONS
SEARCH DETAIL
...