Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Genet Mol Biol ; 39(1): 111-21, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27007904

ABSTRACT

In the pursuit of sustainable agriculture, bioinoculants usage as providers of a crop's needs is a method to limit environmental damage. In this study, a collection of cultivable putative plant growth promoting (PGP) bacteria associated with wheat crops was obtained and this bacterial sample was characterized in relation to the functional diversity of certain PGP features. The isolates were obtained through classical cultivation methods, identified by partial 16S rRNA gene sequencing and characterized for PGP traits of interest. Functional diversity characterization was performed using Categorical Principal Component Analysis (CatPCA) and Multiple Correspondence Analysis (MCA). The most abundant genera found among the 346 isolates were Pseudomonas, Burkholderia, and Enterobacter. Occurrence of PGP traits was affected by genus, niche, and sampling site. A large number of genera grouped together with the ability to produce indolic compounds; phosphate solubilization and siderophores production formed a second group related to fewer genera, in which the genus Burkholderia has a great importance. The results obtained may help future studies aiming prospection of putative plant growth promoting bacteria regarding the desired organism and PGP trait.

2.
Genet Mol Biol ; 38(4): 401-19, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26537605

ABSTRACT

Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria.

3.
Biota Neotrop. (Online, Ed. ingl.) ; 15(2): e20140105, Apr.-June 2015. tab
Article in English | LILACS | ID: biblio-951033

ABSTRACT

The occurrence of associations between bacteria and plant roots may be beneficial, neutral or detrimental. Plant growth promoting (PGP) bacteria form a heterogeneous group of beneficial microorganisms that can be found in the rhizosphere, the root surfaces or in association with host plant. The aim of this study was to isolate and characterize PGP bacteria associated to barley plants (Hordeum vulgare L.) aiming a future application as agricultural inoculant. One hundred and sixty bacterial strains were isolated from roots or rhizospheric soil of barley based on their growth in nitrogen-free selective media. They were evaluated for their ability to produce indolic compounds (ICs) and siderophores, and to solubilize tricalcium phosphate inin vitro assays. Most of them (74%) were able to synthesize ICs in the presence of the precursor L-tryptophan, while 57% of the isolates produced siderophores in Fe-limited liquid medium, and 17% were able to solubilize tricalcium phosphate. Thirty-two isolates possessing different PGP characteristics were identified by partial sequencing of their 16S rRNA gene. Strains belonging to Cedecea andMicrobacterium genera promoted the growth of barley plants in insoluble phosphate conditions, indicating that these bacteria could be used as bioinoculants contributing to decrease the amount of fertilizers applied in barley crops.


A ocorrência de associações entre bactérias e raízes de plantas pode ser benéfica, neutra ou prejudicial. Bactérias promotoras de crescimento vegetal (BPCV) formam um grupo heterogêneo de micro-organismos benéficos que pode ser encontrado na rizosfera, superfícies de raízes ou em associação com plantas hospedeiras. O objetivo deste estudo foi isolar e caracterizar bactérias promotoras do crescimento vegetal (PCV) associadas a plantas de cevada (Hordeum vulgare L.), visando uma futura aplicação como inoculante agrícola. Cento e sessenta linhagens bacterianas foram isoladas a partir de raízes ou solo rizosférico de cevada com base na sua multiplicação em meios seletivos sem nitrogênio. Todos os isolados foram avaliados quanto è sua capacidade de produzir compostos indólicos (CIs), sideróforos e solubilizar fosfato tricálcio, em ensaios in vitro. A maioria dos isolados (74%) foi capaz de sintetizar CIs na presença do precursor L-triptofano, enquanto que 57% produziram sideróforos em meio líquido com deficiência de Fe e 17% foram capazes de solubilizar fosfato tricálcio. Trinta e dois isolados que apresentaram diferentes características PCV foram identificados pelo sequenciamento parcial do gene 16S rRNA. Linhagens pertencentes aos gêneros Cedecea eMicrobacterium promoveram o crescimento de plantas de cevada em condições de fosfato insolúvel, indicando que estas bactérias podem ser utilizadas como inoculantes, contribuindo para a redução da quantidade de fertilizantes aplicados no cultivo da cevada.

SELECTION OF CITATIONS
SEARCH DETAIL
...