Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
PLoS One ; 17(8): e0271492, 2022.
Article in English | MEDLINE | ID: mdl-35998173

ABSTRACT

BACKGROUND: Leishmaniases are diseases caused by Leishmania protozoans that affect around 12 million people. Leishmania promastigotes are transmitted to vertebrates by female phlebotomine flies during their blood meal. Parasites attach to phagocytic cells, are phagocytosed and differentiate into amastigotes. We previously showed that PH8 and LV79 strains of Leishmania amazonensis have different virulence in mice and that their amastigotes differ in their proteomes. In this work, we compare promastigotes' infectivity in macrophages, their proteomes and morphologies. METHODS/PRINCIPAL FINDINGS: Phagocytosis assays showed that promastigotes adhesion to and phagocytosis by macrophages is higher in PH8 than LV79. To identify proteins that differ between the two strains and that may eventually contribute for these differences we used a label-free proteomic approach to compare promastigote´s membrane-enriched fractions. Proteomic analysis enabled precise discrimination of PH8 and LV79 protein profiles and the identification of several differentially abundant proteins. The proteins more abundant in LV79 promastigotes participate mainly in translation and amino acid and nucleotide metabolism, while the more abundant in PH8 are involved in carbohydrate metabolism, cytoskeleton composition and vesicle/membrane trafficking. Interestingly, although the virulence factor GP63 was more abundant in the less virulent LV79 strain, zymography suggests a higher protease activity in PH8. Enolase, which may be related to virulence, was more abundant in PH8 promastigotes. Unexpectedly, flow cytometry and morphometric analysis indicate higher abundance of metacyclics in LV79. CONCLUSIONS/SIGNIFICANCE: Proteome comparison of PH8 and LV79 promastigotes generated a list of differential proteins, some of which may be further prospected to affect the infectivity of promastigotes. Although proteomic profile of PH8 includes more proteins characteristic of metacyclics, flow cytometry and morphometric analysis indicate a higher abundance of metacyclics in LV79 cultures. These results shed light to the gaps in our knowledge of metacyclogenesis in L. amazonensis, and to proteins that should be studied in the context of infection by this species.


Subject(s)
Leishmania mexicana , Leishmania , Animals , Female , Humans , Mice , Mice, Inbred BALB C , Proteome , Proteomics
2.
PLoS Pathog ; 17(4): e1009495, 2021 04.
Article in English | MEDLINE | ID: mdl-33819309

ABSTRACT

Trypanosoma cruzi, the parasite causing Chagas disease, is a digenetic flagellated protist that infects mammals (including humans) and reduviid insect vectors. Therefore, T. cruzi must colonize different niches in order to complete its life cycle in both hosts. This fact determines the need of adaptations to face challenging environmental cues. The primary environmental challenge, particularly in the insect stages, is poor nutrient availability. In this regard, it is well known that T. cruzi has a flexible metabolism able to rapidly switch from carbohydrates (mainly glucose) to amino acids (mostly proline) consumption. Also established has been the capability of T. cruzi to use glucose and amino acids to support the differentiation process occurring in the insect, from replicative non-infective epimastigotes to non-replicative infective metacyclic trypomastigotes. However, little is known about the possibilities of using externally available and internally stored fatty acids as resources to survive in nutrient-poor environments, and to sustain metacyclogenesis. In this study, we revisit the metabolic fate of fatty acid breakdown in T. cruzi. Herein, we show that during parasite proliferation, the glucose concentration in the medium can regulate the fatty acid metabolism. At the stationary phase, the parasites fully oxidize fatty acids. [U-14C]-palmitate can be taken up from the medium, leading to CO2 production. Additionally, we show that electrons are fed directly to oxidative phosphorylation, and acetyl-CoA is supplied to the tricarboxylic acid (TCA) cycle, which can be used to feed anabolic pathways such as the de novo biosynthesis of fatty acids. Finally, we show as well that the inhibition of fatty acids mobilization into the mitochondrion diminishes the survival to severe starvation, and impairs metacyclogenesis.


Subject(s)
Adenosine Triphosphate/metabolism , Chagas Disease/parasitology , Fatty Acids/metabolism , Trypanosoma cruzi/metabolism , Animals , Cell Differentiation , Cell Proliferation , Energy Metabolism , Insect Vectors/parasitology , Life Cycle Stages , Mitochondria/metabolism , Nutrients/deficiency , Oxidation-Reduction , Oxidative Phosphorylation , Trypanosoma cruzi/growth & development
3.
Molecules ; 25(7)2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32252252

ABSTRACT

Trypanosoma cruzi is the aetiologic agent of Chagas disease, which affects people in the Americas and worldwide. The parasite has a complex life cycle that alternates among mammalian hosts and insect vectors. During its life cycle, T. cruzi passes through different environments and faces nutrient shortages. It has been established that amino acids, such as proline, histidine, alanine, and glutamate, are crucial to T. cruzi survival. Recently, we described that T. cruzi can biosynthesize glutamine from glutamate and/or obtain it from the extracellular environment, and the role of glutamine in energetic metabolism and metacyclogenesis was demonstrated. In this study, we analysed the effect of glutamine analogues on the parasite life cycle. Here, we show that glutamine analogues impair cell proliferation, the developmental cycle during the infection of mammalian host cells and metacyclogenesis. Taken together, these results show that glutamine is an important metabolite for T. cruzi survival and suggest that glutamine analogues can be used as scaffolds for the development of new trypanocidal drugs. These data also reinforce the supposition that glutamine metabolism is an unexplored possible therapeutic target.


Subject(s)
Glutamine/analogs & derivatives , Life Cycle Stages/drug effects , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/growth & development , Animals , Azaserine/chemistry , Azaserine/pharmacology , CHO Cells , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cricetulus , Energy Metabolism/drug effects , Glutamic Acid/metabolism , Glutamine/metabolism , Isoxazoles/chemistry , Isoxazoles/pharmacology , Molecular Structure , Trypanocidal Agents/chemistry , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/metabolism
4.
Biochem J, v. 477, n. 10, p. 1827-1845, abr. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3024

ABSTRACT

In Trypanosoma cruzi, the etiological agent of Chagas disease, the amino acid proline participates in processes related to T. cruzi survival and infection, such as ATP production, cell differentiation, host-cell invasion, and in protection against osmotic, nutritional, and thermal stresses and oxidative imbalance. However, little is known about proline biosynthesis in this parasite. delta1-Pyrroline-5-carboxylate reductase (P5CR, EC 1.5.1.2) catalyzes the biosynthesis of proline from delta1-pyrroline-5-carboxylate (P5C) with concomitant NADPH oxidation. Herein, we show that unlike other eukaryotes, T. cruzi biosynthesizes proline from P5C, which is produced exclusively from glutamate. We found that TcP5CR is a NADPH-dependent cytosolic enzyme with a Km app for P5C of 23.9 mM and with a higher expression in the insect-resident form of parasite. High concentrations of the co-substrate NADPH partially inhibited TcP5CR activity, prompting us to analyze multiple kinetic inhibition models. The model that best explained the obtained data included a non-competitive substrate inhibition mechanism (Ki app = 45 ± 0.7 µM). Therefore, TcP5CR is a candidate as a regulatory factor of this pathway. Finally, we show that P5C can exit trypanosomatid mitochondria in conditions that do not compromise organelle integrity. These observations, together with previously reported results, lead us to propose that in T. cruzi TcP5CR participates in a redox shuttle between the mitochondria and the cytoplasm. In this model cytoplasmic redox equivalents from NADPH pools are transferred to the mitochondria using proline as a reduced metabolite and shuttling to fuel electrons to the respiratory chain through proline oxidation by its cognate dehydrogenase

5.
Biochem. J. ; 477(10): 1827–1845, 2020.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17638

ABSTRACT

In Trypanosoma cruzi, the etiological agent of Chagas disease, the amino acid proline participates in processes related to T. cruzi survival and infection, such as ATP production, cell differentiation, host-cell invasion, and in protection against osmotic, nutritional, and thermal stresses and oxidative imbalance. However, little is known about proline biosynthesis in this parasite. delta1-Pyrroline-5-carboxylate reductase (P5CR, EC 1.5.1.2) catalyzes the biosynthesis of proline from delta1-pyrroline-5-carboxylate (P5C) with concomitant NADPH oxidation. Herein, we show that unlike other eukaryotes, T. cruzi biosynthesizes proline from P5C, which is produced exclusively from glutamate. We found that TcP5CR is a NADPH-dependent cytosolic enzyme with a Km app for P5C of 23.9 mM and with a higher expression in the insect-resident form of parasite. High concentrations of the co-substrate NADPH partially inhibited TcP5CR activity, prompting us to analyze multiple kinetic inhibition models. The model that best explained the obtained data included a non-competitive substrate inhibition mechanism (Ki app = 45 ± 0.7 µM). Therefore, TcP5CR is a candidate as a regulatory factor of this pathway. Finally, we show that P5C can exit trypanosomatid mitochondria in conditions that do not compromise organelle integrity. These observations, together with previously reported results, lead us to propose that in T. cruzi TcP5CR participates in a redox shuttle between the mitochondria and the cytoplasm. In this model cytoplasmic redox equivalents from NADPH pools are transferred to the mitochondria using proline as a reduced metabolite and shuttling to fuel electrons to the respiratory chain through proline oxidation by its cognate dehydrogenase

SELECTION OF CITATIONS
SEARCH DETAIL
...