Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicology ; 24(4): 949-58, 2015 May.
Article in English | MEDLINE | ID: mdl-25750014

ABSTRACT

Several research groups have studied new biopesticides which are less toxic to the environment and capable of controlling the vectors of parasitic diseases, especially in aquatic ecosystems. Pest control by photodynamic substances is an alternative to chemical or other measures, with chlorophyll and its derivatives as the most studied substances supported by their easy availability and low production costs. The impact of chlorophyll derivatives on four different species, a small crustacean (Daphnia similis), a unicellular alga (Euglena gracilis) and two species of fish (Astyanax bimaculatus and Cyprynus carpio) were tested under short-term conditions. In addition, the effects of long-term exposure were evaluated in D. similis and E. gracilis. In short-term tests, mortality of D. similis (EC50 = 7.75 mg/L) was most strongly affected by chlorophyllin, followed by E. gracilis (EC50 = 12.73 mg/L). The fish species showed a greater resistance documented by their EC50 values of 17.58 and 29.96 mg/L in C. carpio and A. bimaculatus, respectively. A risk quotient is calculated by dividing an estimate of exposure by an estimate of effect. It indicated that chlorophyll derivatives can be applied in nature to control the vectors of parasitic diseases under short-term conditions, but long-term exposure requires new formulations.


Subject(s)
Biological Control Agents/toxicity , Chlorophyllides/toxicity , Daphnia/drug effects , Euglena gracilis/drug effects , Fishes/metabolism , Animals , Dose-Response Relationship, Drug , Lethal Dose 50
2.
Parasitol Res ; 109(3): 781-6, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21448572

ABSTRACT

Recently, it was demonstrated that mosquito larvae can be killed by means of photodynamic processes after the larvae have incorporated the photosensitizer chlorophyllin or pheophorbid, and were treated with light. The water-soluble substances were applied to and incorporated by the larvae in darkness. With Chaoborus sp. a dark incubation of about 3 h is sufficient to yield mortality of about 90% and ≥6 h resulted in almost 100% mortality during subsequent illumination. Temperature did not influence mortality of the larvae significantly in a treatment of 6 h dark incubation and subsequent 3 h illumination. At 10°C, 20°C, or 30°C, between 80% and 100% of the treated larvae died when the light intensity from a solar simulator was above 30 W/m(2). Lower irradiances were less effective. The LD(50) value of magnesium chlorophyllin was about 22.25 mg/l and for Zn chlorophyll 17.53 mg/l, while Cu chlorophyll (LD(50) 0.1 mg/l) was shown to be toxic also without light. Chlorophyllin, which was lyophilized immediately after extraction, was far more lethal to the larvae (LD(50) 14.88 mg/l) than air-dried Mg chlorophyllin.


Subject(s)
Antiparasitic Agents/metabolism , Chlorophyll/metabolism , Diptera/drug effects , Ecosystem , Light , Photosensitizing Agents/metabolism , Water/parasitology , Animals , Darkness , Diptera/metabolism , Larva/drug effects , Larva/metabolism , Lethal Dose 50 , Survival Analysis , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...