Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(11): e21843, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027902

ABSTRACT

This work investigated the healing properties of proteins extracted of latex (HdLP) on excisional wounds. Cell toxicity of HdLP was investigated carried out in murine fibroblasts after incubation with HdLP (12.5-100 µg/ml). The dermal irritability test was performed to evaluate dermal reactions. The wounds were performed and treated with vehicle or HdLP (0.5 %, 1.0 %, and 2.0 %). The macroscopic parameters, histological analysis and measurement of inflammatory markers and mediators were evaluated. HdLP did not exhibit cytotoxicity and did not induce skin irritation. HdLP stimulated the release of IL-1ß at the beginning of the inflammatory phase. This effect probably favored the earlier release of IL-10 by macrophages, during the proliferative phase. The shortening and completeness of healing were characterized by fibroblast proliferation and the presence of newly synthesized collagen fibers. This was accompanied by well-organized re-epithelialization. The involvement of latex proteins in this activity is reported for the first time.

2.
Phytother Res ; 32(4): 688-697, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29468743

ABSTRACT

The healing performance of a hydrogel composed of hemicelluloses extracted from seeds of Caesalpinia pulcherrima (Fabaceae) and mixed with phytomodulatory proteins obtained from the latex of Calotropis procera was characterized on excisional wounds. The hydrogel did not induce dermal irritability. When topically used on excisional wounds, the hydrogel enhanced healing by wound contraction. Histology and the measurement of inflammatory mediators (myeloperoxidase, interleukin-1ß, and interleukin-6) suggested that the inflammatory phase of the healing process was intensified, stimulating fibroplasia and neovascularization (proliferative phase) and tissue remodeling by increasing new collagen fiber deposition. In addition, reduction on levels of malondialdehyde in the groups that the hydrogel was applied suggested that the oxidative stress was reduced. The hydrogel performed better than the reference drug used, as revealed by the extended thickness of the remodeled epithelium.


Subject(s)
Calotropis/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Plant Extracts/chemistry , Wound Healing/drug effects , Animals , Latex/pharmacology , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...