Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Bodyw Mov Ther ; 39: 79-86, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876705

ABSTRACT

BACKGROUND: Strengthening the hip and trunk muscles may decrease foot pronation in upright standing due to expected increases in hip passive torque and lower-limb external rotation. However, considering the increased pronation caused by a more varus foot-ankle alignment, subjects with more varus may experience smaller or no postural changes after strengthening. OBJECTIVE: To investigate the effects of hip and trunk muscle strengthening on lower-limb posture during upright standing and hip passive torque of women with more and less varus alignment. METHODS: This nonrandomized controlled experimental study included 50 young, able-bodied women. The intervention group (n = 25) performed hip and trunk muscle strengthening exercises, and the control group (n = 25) maintained their usual activities. Each group was split into two subgroups: those with more and less varus alignment. Hip, shank, and rearfoot-ankle posture and hip passive external rotation torque were evaluated. Mixed analyses of variance and preplanned contrasts were used to assess prepost changes and between-group differences (α = 0.05). RESULTS: The less-varus subgroup of the intervention group had a reduced rearfoot eversion posture (P = 0.02). No significant changes were observed in the less-varus subgroup of the control group (P = 0.31). There were no significant differences in posture between the control and intervention groups when varus was not considered (P ≥ 0.06). The intervention group had increased hip passive torque (P = 0.001) compared to the control group, independent of varus alignment. CONCLUSION: Despite the increases in hip passive torque, the rearfoot eversion posture was reduced only in women with a less-varus alignment. Having more foot-ankle varus may prevent eversion reductions.


Subject(s)
Foot , Muscle Strength , Posture , Humans , Female , Posture/physiology , Young Adult , Muscle Strength/physiology , Foot/physiology , Pronation/physiology , Torque , Ankle/physiology , Adult , Biomechanical Phenomena/physiology , Ankle Joint/physiology , Muscle, Skeletal/physiology , Exercise Therapy/methods
2.
J Appl Biomech ; 39(4): 254-263, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37487581

ABSTRACT

The upper body and trunk muscles are crucial to perform soccer kicks. Resistance training targeting these muscles may modify the pattern adopted during kicking. This study aimed to investigate the effect of resistance training of the arm and anterior trunk muscles on instep kicking kinematics. Twenty-six male participants were randomly allocated into a training group or control group. The training group underwent resistance training of arm and trunk muscles and practiced the instep kick for 8 weeks. The control group only practiced kicking during the same period. The trunk, hip, and knee kinematics were assessed during the instep kick before and after the intervention. Kinematics were analyzed according to their data distribution with statistical parametric or nonparametric mapping. The effect of the training on the 1-repetition maximum test was analyzed using a repeated-measures multivariate analysis of variance. The training group showed greater hip extension after the training during the backswing phase (Hedge g effect size of 0.316-0.321) and increased 1-repetition maximum for all exercises. There were no other differences. The present study documented the nonlocal effect of strengthening training in which arm and trunk muscle training resulted in changes in hip kinematics during the backswing phase of the instep kick.


Subject(s)
Resistance Training , Soccer , Humans , Male , Soccer/physiology , Biomechanical Phenomena , Muscle, Skeletal/physiology , Upper Extremity
3.
Phys Ther Sport ; 62: 1-9, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37300967

ABSTRACT

OBJECTIVE: To identify subgroups of runners' profiles who had or did not have a History of Running-Related Injury in the Shank and Foot (HRRI-SF). DESIGN: Cross-sectional. METHODS: Clinical measures of passive ankle stiffness (measured as ankle position (compliance) to index passive joint stiffness), forefoot-shank alignment, peak torque of ankle plantar flexors, years of running experience, and age were analyzed through Classification and Regression Tree (CART). RESULTS: The CART identified four subgroups of runners with a greater prevalence of HRRI-SF: (1) ankle stiffness ≤0.42°; (2) ankle stiffness >0.42°, age ≤23.5 years, and forefoot varus >19,64°; (3) ankle stiffness >0.42°, age >62.5 years, and forefoot varus ≤19.70°; (4) ankle stiffness >42°, age >62.5 years, forefoot varus >19.70°, and running experience ≤7 years. Three subgroups had a lower prevalence of HRRI-SF: (1) ankle stiffness >0.42° and age between 23.5 and 62.5 years; (2) ankle stiffness >0.42°, age ≤23.5 years, and forefoot varus ≤14.64°; (3) ankle stiffness >0.42°, age >62.5 years, forefoot varus >19.7°, and running experience >7 years. CONCLUSION: One runner profile subgroup showed that higher ankle stiffness could predict HRRI-SF without association with other variables. Distinct interactions among variables characterized the other subgroups' profiles. The identified interactions among the predictors used to characterize the runners' profiles could be used in clinical decision-making.


Subject(s)
Foot Injuries , Running , Humans , Young Adult , Adult , Middle Aged , Cross-Sectional Studies , Leg , Ankle Joint , Age Factors , Biomechanical Phenomena
4.
J Bodyw Mov Ther ; 32: 19-28, 2022 10.
Article in English | MEDLINE | ID: mdl-36180148

ABSTRACT

BACKGROUND: Pain is one of the most common and troublesome non-motor symptoms in Parkinson's disease (PD), including low back pain (LBP). OBJECTIVE: This study aims to evaluate the feasibility, acceptability, and safety of using Pilates for individuals with PD and LBP, as well as the effect on pain intensity, disability, motor and nonmotor PD symptoms, and quality of life. METHODS: Participants received 24 sessions of supervised Pilates twice a week for 12 weeks, each session consisting of 60 min. The isometric contractions of the core muscles were emphasized. RESULTS: Fifteen (13%) of the screened patients were enrolled in the study and continued for the entire 2 months (100%). Participants completed the full training in 352 of 360 sessions (98%). Adverse effects were not reported. Pain and disability were significantly improved after intervention (Visual Analog Scale, p = 0.007; McGill Pain Questionnaire, p = 0.034; Roland-Morris Disability Questionnaire, p = 0.035). There were also significant improvements in depressive symptoms (Beck Depression Inventory, p = 0.028) and PD symptoms (Unified Parkinson's Disease Rating Scale - UPDRSI, UPDRSIII, UPDRS Total). However, there were no statistically significant changes in fatigue and quality of life. CONCLUSIONS: This study suggests that the 12-week Pilates program is feasible and well tolerated by people with PD in mild to moderate stages of the disease. It also appears to be a promising strategy to reduce pain intensity and LBP-related disability, as well as PD motor and non-motor symptoms, which can be associated with this painful symptom. This study provides a basis for future investigations, especially randomized clinical trials.


Subject(s)
Low Back Pain , Parkinson Disease , Feasibility Studies , Humans , Low Back Pain/complications , Low Back Pain/therapy , Pain Measurement , Parkinson Disease/complications , Quality of Life
5.
Infant Behav Dev ; 68: 101730, 2022 08.
Article in English | MEDLINE | ID: mdl-35714556

ABSTRACT

Walking experience is crucial for inter-joint coordination during gait acquisition. Toddlers show asymmetrical lower limb function during early locomotion for transferring body weight (regulatory limb) and steering the direction of walking (impulse limb). This study aimed to investigate the association between coordination patterns and walking experience, and between coordination variability and walking experience according to healthy toddlers' lower limb function and stance periods. Typically developing toddlers (n = 22; 17.27 ± 3.13 months) were distributed into two groups: up to (LWE) and greater than (GWE) three months of walking experience. The lower limbs were classified as regulatory or impulse limb and analyzed during the onset (SO), mid (MS), and late (LS) stance intervals. Hip-ankle, knee-ankle, and hip-knee coupling angle (CA) and its variability (CAV) were assessed. A relationship was found between inter-joint coordination pattern and groups, which was distinct according to stance period and lower limb function: (a) hip-ankle CA: at SO for both limbs, MS for the regulatory limb, and LS for the impulse limb; (b) knee-ankle CA: at SO for both limbs and MS for the regulatory limb; (c) hip-knee CA: at SO for both limbs, at MS for the regulatory limb, and LS for the impulse limb. These findings were linked to differences observed in distal joints between groups, mainly at the ankle during stance onset. The CAV was negatively associated with walking experience only in the regulatory limb in the following variables: hip-ankle at MS, knee-ankle at SO, and hip-knee at LS. Findings showed different functional roles of the lower limbs in dealing with the demands of balance and propulsion during early walking.


Subject(s)
Hip Joint , Walking , Biomechanical Phenomena , Child, Preschool , Gait , Humans , Knee Joint , Lower Extremity
6.
Rev Bras Ortop (Sao Paulo) ; 57(1): 167-174, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35198125

ABSTRACT

Objective To evaluate the biomechanical behavior of the medial longitudinal arch (MLA) of the foot and the kinematic parameters of the lower limbs with biomimetic footwear (BF) and non-biomimetic (NB1, NB2, NB3 and NB4) footwear in children at the beginning of the gait acquisition phase. Methods Four toddlers were evaluated at the beginning of the gait acquisition phase under the following conditions: walking barefoot, ambulation with BF and NB1, NB2, NB3 and NB4 footwear in hard floor. BF is described as biomimetic because of its property of emulating natural and irregular floors through a dynamic internal insole. The MLA and kinematics of the hip, knee, and ankle during gait were evaluated by three-dimensional motion analysis system. The similarity between the kinematic curves of barefoot and footwear conditions was analyzed by root mean square error (RMSE). Results The use of BF presented the highest magnitude of MLA and the greatest difference in relation to barefoot condition (higher RMSE). The BF showed less difference in the kinematics of the knee and ankle joints during gait when compared to barefoot condition (lower RMSE). NB2 footwear presented hip kinematics more similar to barefoot condition (lower RMSE). Conclusion Biomimetics footwear and NB2 shoes (both with wider forefoot region) generated smaller differences in lower limbs compared to barefoot. In addition, the MLA was higher in the BF, probably because different design from other shoes.

7.
Rev. bras. ortop ; 57(1): 167-174, Jan.-Feb. 2022. tab, graf
Article in English | LILACS | ID: biblio-1365740

ABSTRACT

Abstract Objective To evaluate the biomechanical behavior of the medial longitudinal arch (MLA) of the foot and the kinematic parameters of the lower limbs with biomimetic footwear (BF) and non-biomimetic (NB1, NB2, NB3 and NB4) footwear in children at the beginning of the gait acquisition phase. Methods Four toddlers were evaluated at the beginning of the gait acquisition phase under the following conditions: walking barefoot, ambulation with BF and NB1, NB2, NB3 and NB4 footwear in hard floor. BF is described as biomimetic because of its property of emulating natural and irregular floors through a dynamic internal insole. The MLA and kinematics of the hip, knee, and ankle during gait were evaluated by three-dimensional motion analysis system. The similarity between the kinematic curves of barefoot and footwear conditions was analyzed by root mean square error (RMSE). Results The use of BF presented the highest magnitude of MLA and the greatest difference in relation to barefoot condition (higher RMSE). The BF showed less difference in the kinematics of the knee and ankle joints during gait when compared to barefoot condition (lower RMSE). NB2 footwear presented hip kinematics more similar to barefoot condition (lower RMSE). Conclusion Biomimetics footwear and NB2 shoes (both with wider forefoot region) generated smaller differences in lower limbs compared to barefoot. In addition, the MLA was higher in the BF, probably because different design from other shoes.


Resumo Objetivo Avaliar o comportamento do arco longitudinal medial do pé (ALM) e os parâmetros cinemáticos dos membros inferiores durante a deambulação com calçados biomiméticos (CBs) e não biomiméticos (NB1, NB2, NB3 e NB4) em crianças no início da fase de aquisição da marcha. Métodos Foram avaliadas quatro crianças no início da fase de aquisição da marcha nas seguintes condições: andar descalço, andar com CBs e calçados NB1, NB2, NB3 e NB4 em solo plano. O calçado biomimético é descrito como biomimético por emular pisos naturais e irregulares por meio de uma palmilha interna dinâmica. O ALM e a cinemática do quadril, joelho e tornozelo durante a marcha foram avaliados por meio de sistema de análise do movimento tridimensional. A similaridade entre as curvas cinemáticas das condições descalça e com calçado foi analisada por meio do cálculo de root mean square error (RMSE). Resultados O CB foi o que apresentou maior magnitude do ALM e maior diferença do ALM em relação à condição descalça (maior RMSE). O CB apresentou ainda menor diferença na cinemática das articulações do joelho e tornozelo durante a marcha quando comparado à condição descalça (menor RMSE). O calçado NB2 apresentou a cinemática do quadril mais semelhante à condição descalça (menor RMSE). Conclusão Os calçados CB e NB2 que apresentam a região do antepé mais larga geraram menores diferenças na cinemática dos membros inferiores. Além disso, o ALM foi maior no CB provavelmente devido a seu design ser diferente daquele dos demais calçados.


Subject(s)
Humans , Infant , Shoes , Walking , Biomimetics , Foot , Gait
8.
Gait Posture ; 90: 190-196, 2021 10.
Article in English | MEDLINE | ID: mdl-34509041

ABSTRACT

BACKGROUND: Although the effects of medial wedge insoles on lower limb biomechanics have been investigated, information about the effects of different magnitudes of medial posting is still lacking. RESEARCH QUESTION: What are the dose-response effects of medial wedge insoles with postings varying between 0 °, 3 °, 6 °, and 9 ° of inclination on the lower limb biomechanics during walking and running in individuals with pronated feet? METHODS: Sixteen participants with an FPI ≥ 6 were recruited. Four arch-supported insole conditions with varying degrees of medial heel wedge were tested (0°, 3°, 6°, and 9°). A 3D motion analysis system with force plates was used to obtain the kinetics and kinematics of walking and running at self-selected speeds. To compare the ankle, knee, and hip angles and moments among conditions, a time series analysis was performed using Statistical Parametric Mapping (SPM). RESULTS: A reduction in ankle eversion angle was observed during walking for all insoles. For running, the 6° and 9° insoles decreased the ankle eversion angle during early stance and increased this angle during the propulsive phase. A decrease in ankle eversion moment was observed in walking and running for 6° and 9° insoles. An increase in knee adduction moment occurred in walking and running for all insoles. For hip, the 6° and 9° insoles showed, during walking, a decrease in hip adduction angle and an increase in hip adduction and external rotation moments. For most variables, statistical differences were found for a greater period across the stance phase as the medial wedge increased, except for ankle eversion moment and hip external rotation moment during walking. SIGNIFICANCE: The biomechanical effects over the time series for many of the parameters increased with the addition of insole inclination, showing a dose-response effect of medial wedge insoles on the lower limb biomechanics during walking and running in adults with excessive foot pronation.


Subject(s)
Foot Orthoses , Walking , Adult , Biomechanical Phenomena , Gait , Humans , Knee Joint , Lower Extremity , Rotation
9.
MethodsX ; 8: 101361, 2021.
Article in English | MEDLINE | ID: mdl-34434848

ABSTRACT

Movement analysis provides a vast amount of data, which, frequently, are not used in the clinical decision-making process. For example, traditional gait data visualization is based on a time-based display of joint angles, but part of the information is lost when these time-series are averaged across different gait strides. Horizon graph is a data display method that increases the density of time-series data by horizontally dividing and layering multiple filled line graphs. This higher data density increases the amount of information displayed in the same graph and, consequently, enables visual data comparisons between multiple time series. Horizon graph of kinematic data allows displaying several cycles of different joints and their respective continuous symmetry ratio between sides. The aim of this work is to introduce the Horizon graph as a method to analyze kinematic gait data and help to characterize its symmetry. Examples of Horizon graph application to running is offered. Horizon graph may prove to be a useful clinical tool to visualize kinematic time-series and facilitate their clinical interpretation.•Continuous gait time series is a powerful tool for clinical analysis.•Horizon graph, higher data density graph, increases the information displayed.•Horizon graph is a clinical tool to visualize kinematic curves.

10.
Sensors (Basel) ; 21(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34450697

ABSTRACT

This study aimed to investigate the effects of knee flexion during the preparation phase of a serve on the tennis serve performance, using inertial sensors. Thirty-two junior tennis players were divided into two groups based on their maximum knee flexion during the preparation phase of serve: Smaller (SKF) and Greater (GKF) Knee Flexion. Their racket velocity, racket height, and knee extension velocity were compared during the tennis serve. Inertial sensors tracked participants' shank, thigh, and racket motions while performing five first, flat, and valid serves. Knee flexion was analysed during the preparation phase of serve, knee extension velocity after this phase, racket velocity just before ball impact, and racket height at impact. Pre-impact racket velocity (mean difference [MD] = 3.33 km/h, p = 0.004) and the knee extension velocity (MD = 130.30 °/s, p = 0.012) were higher in the GKF than SKF; however, racket impact height was not different between groups (p = 0.236). This study's findings support the importance of larger knee flexion during the preparation phase of serve-to-serve performance. This motion should be seen as a contributor to racket velocity.


Subject(s)
Tennis , Biomechanical Phenomena , Humans , Knee Joint
11.
Sports Biomech ; : 1-13, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34121609

ABSTRACT

This study aimed to investigate the regularity of the lower limb joint kinematics in runners with and without a history of running-related injuries. The second aim was to verify if the movement pattern regularities are different among the lower limb joints. Eighteen asymptomatic recreational runners with and without a history of running-related injury participated in this study. Lower limb kinematics in the sagittal plane were recorded during running on a treadmill at a self-selected speed. The regularities of the time series of hip, knee, and ankle were analysed using sample entropy (SampEn). A mixed analysis of variance was used to investigate differences between groups and among joints. Runners with a history of injury had lower SampEn values than runners without a history of injury. Ankle kinematics SampEn was higher than that of the knee and hip. Knee kinematics had higher values of SampEn than that of the hip. Runners with a history of running-related injury had greater joint kinematic's regularity. This result suggests that, even in asymptomatic runners, previous injuries could influence the movement pattern regularity. Also, the regularity was different among joints. The ankle demonstrated the lowest regularity, reinforcing the different functions that lower limb joints perform during running.

12.
Braz J Phys Ther ; 25(6): 727-734, 2021.
Article in English | MEDLINE | ID: mdl-34020879

ABSTRACT

BACKGROUND: Increased foot pronation during walking has been associated with low back pain. This association may be due to the impact of increased pronation on pelvic motion. OBJECTIVE: To investigate the effects of increased bilateral foot pronation on pelvic kinematic in frontal and transverse planes during the loading response phase of gait. METHODS: Pelvic, hip, and foot angular positions of 20 participants were collected while they walked at fast speed wearing flat and medially inclined insoles inserted in the shoes. Pelvic motion in frontal and transverse planes was analyzed during the loading response phase. Foot eversion-inversion was analyzed during the complete stance phase to verify the insoles effectiveness in inducing increased pronation and to exclude excessive pronators. RESULTS: Inclined insoles were effective in inducing increased foot pronation. Pelvic and hip motion were altered in the increased pronation condition compared to the control condition. In the frontal plane, mean pelvic position was more inclined to the contralateral side (mean difference [MD]: 0.54°; 95%CI: 0.23, 0.86) and its range of motion (ROM) was reduced (MD: 0.50°; 95%CI: 0.20, 0.79). In the transverse plane, mean pelvic position was less rotated toward the contralateral leg (MD: 1.03°; 95%CI: 0.65, 1.60) without changes in ROM (MD: 0.04°; 95%CI: -0.17, 0.25). The hip was more internally rotated (MD: 1.37°; 95%CI: 0.76, 1.98) without changes in ROM (MD: 0.10°; 95%CI: -1.02, 1.23). CONCLUSION: Increased bilateral foot pronation changes pelvic motion during walking and should be assessed, as a contributing factor to possible pelvic and lower back disorders.


Subject(s)
Foot , Gait , Biomechanical Phenomena , Humans , Pronation , Shoes , Walking
13.
J Biomech ; 121: 110425, 2021 05 24.
Article in English | MEDLINE | ID: mdl-33873107

ABSTRACT

The purpose of this study was to investigate the angular kinetic energy transfers and expenditure among the trunk (bisegmented), the pelvis and the kick limb during maximal soccer instep kicking, and to characterize kicking kinetics and kinematics. Eighteen adult male amateur soccer players (24.0 ± 4.1 years old) were assessed. Three-dimensional kinematics and ground reaction force were measured. A 6-degrees-of-freedom model was assumed, comprising the upper trunk, lower trunk, pelvis, thigh, shank and foot, and the thoraco-lumbar, lumbo-pelvic, hip, knee, and ankle joints. Angular kinematics and joint moments were computed. Power flow analysis was done by calculating the joint powers (to describe joint-to-segments energy transfers) and the proximal and distal segment powers (to describe segment-to-segment transfers). Power, kinematic and kinetic time series were presented to describe the energy flows' directions. The total mechanical energy expenditure (TMEE) at each joint was also calculated. The TMEEs pointed to substantial energy expenditure at the trunk (27% of the summed work produced by the analyzed joints). In the initial phases of kicking, the trunk generates downward energy flows from the upper to the lower trunk and from the lower trunk to the pelvis, and then to the lower limb, sequentially, which favors angular motions for ball contact. There is a formation and release of a tension arc only at the hip joint, and deceleration of the segments slightly sooner than ball contact, differently from theoretical accounts. There are energy flows, hitherto unknown, among the trunk, pelvis and kick limb, revealing mechanical strategies of kicking.


Subject(s)
Soccer , Adult , Biomechanical Phenomena , Foot , Humans , Knee Joint , Lower Extremity , Male , Young Adult
14.
Braz J Phys Ther ; 25(5): 530-535, 2021.
Article in English | MEDLINE | ID: mdl-33658164

ABSTRACT

BACKGROUND: Hip motion in the transverse plane is coupled with foot motion in the frontal plane during closed kinematic activities, such as gait. Considering that movement patterns and bone alignment might influence passive mechanical properties of joints in the long term, it is possible that hip passive stiffness and foot complex stiffness and alignment are related to each other. OBJECTIVES: To investigate whether hip passive stiffness, midfoot passive stiffness and shank-forefoot alignment are related to each other. METHOD: Thirty healthy adult individuals with a mean age of 25.4 years participated (18 women and 12 men). The Foot Torsimeter was used to measure midfoot stiffness, and hip stiffness and foot alignment were measured using clinical measures. Pearson and Spearman correlation coefficients were calculated to test the associations between each pair of variables, with α = 0.05. RESULTS: Hip stiffness was positively correlated with midfoot absolute stiffness (r = 0.41, p = 0.02), indicating that increased hip stiffness is associated with increased midfoot stiffness. There were no associations between shank-forefoot alignment and the other variables. CONCLUSIONS: In clinical settings, individuals with reduced hip passive stiffness may also have reduced midfoot passive stiffness, and vice versa. Shank-forefoot alignment is not linearly associated with hip or midfoot passive stiffness.


Subject(s)
Foot , Gait , Adult , Biomechanical Phenomena , Female , Hand , Humans , Leg , Male
15.
J Biomech ; 119: 110328, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33611052

ABSTRACT

The midfoot joint complex (MFJC) is related to the mechanics and efficiency of the walking propulsive phase and low midfoot passive stiffness may require compensatory foot and ankle joint moments to avoid excessive pronation and inefficient propulsion. This study aimed to investigate the kinematics and kinetics of the MFJC and ankle during the propulsive phase of walking in subjects with larger and smaller midfoot passive stiffness. MFJC passive stiffness of 20 healthy adult participants, and the kinematics and kinetics of the MFJC (forefoot-rearfoot) and ankle (rearfoot-shank) during the stance phase of walking were measured. The participants were divided equally into two groups according to the MFJC passive stiffness. Ranges of motion (ROM) and mean joint moments were computed for the late stance. Independent t-tests (α = 0.05) revealed that subjects with lower midfoot passive stiffness showed an increased MFJC sagittal ROM (flattened longitudinal arch) (p = 0.002), increased ankle frontal ROM (more everted positions) (p = 0.002), increased MFJC frontal ROM (more inverted positions) (p = 0.019), as well as a tendency for larger ankle sagittal ROM (p = 0.056). They also showed increased MFJC (p = 0.021) and ankle (p = 0.018) moments in the sagittal plane, increased MFJC moment in the frontal plane (p = 0.047) and a tendency for a predominant ankle moment in the frontal (p = 0.058). Foot and ankle joint moments are possible strategies to reduce pronation and improve propulsion, but not sufficient to prevent the altered kinematics related to low midfoot stiffness. Therefore, midfoot passive stiffness is critical for foot and ankle kinematics and kinetics during walking propulsive phase and is a potential target of interventions.


Subject(s)
Ankle Joint , Walking , Adult , Ankle , Biomechanical Phenomena , Gait , Humans , Kinetics
16.
Braz J Phys Ther ; 25(3): 242-250, 2021.
Article in English | MEDLINE | ID: mdl-32561136

ABSTRACT

BACKGROUND: Adherence to the use of recommended measures/criteria for return to sport clearance after anterior cruciate ligament reconstruction is crucial for successful rehabilitation. OBJECTIVES: The purpose of this study was to describe the current clinical practice of Brazilian physical therapists that treat patients after anterior cruciate ligament reconstruction, including the measures/criteria used to support the decision-making process regarding return to sport. The secondary aim was to investigate factors associated with the use of the most recommended measures/criteria for return to sport. METHODS: An electronic survey questionnaire was sent to Brazilian physical therapists. The survey consisted of questions about demographics and professional and clinical practice data related to anterior cruciate ligament reconstruction postoperative rehabilitation and return to sport criteria. Descriptive statistics and chi-square tests were used for analyses. RESULTS: A sample of 439 professionals participated in the survey. Only 6.4% of the physical therapists use the most recommended measures/criteria for return to sport after anterior cruciate ligament reconstruction. Professional certification in Sports Physical Therapy was the only factor associated with the use of these recommended measures/criteria (p=0.02). The measures most used for return to sport clearance were related to physical factors (65.3% to 75.1%), such as range of motion and muscle strength. A small number of professionals use questionnaires to assess functional (16.6%) and psychological (19.1%) aspects of their patients to support the decision-making process. CONCLUSION: In their clinical practice, most Brazilian physical therapists do not use the recommended measures/criteria for return to sport after anterior cruciate ligament reconstruction.


Subject(s)
Anterior Cruciate Ligament Injuries/physiopathology , Anterior Cruciate Ligament Reconstruction , Muscle Strength/physiology , Brazil , Humans , Physical Therapists , Range of Motion, Articular , Return to Sport , Surveys and Questionnaires
17.
Braz J Phys Ther ; 25(4): 415-420, 2021.
Article in English | MEDLINE | ID: mdl-32962913

ABSTRACT

BACKGROUND: The use of predictive equation of muscular torque can reduce physical effort and time spent during evaluation. OBJECTIVES: To establish, validate, and test the accuracy of a prediction equation to estimate the hip external rotators (HER) torque in adults and older adults by means of hip extensors (HEX) torque measurement. METHODS: Eighty-three healthy adults (development set) were assessed to test the association of HEX and HER torques and to establish the prediction equation. A separate 36 adults and 15 older adults (validation sets) were assessed to test the ability of the equation to estimate HER torque. Hip isometric strength was assessed by a handheld dynamometer. RESULTS: Simple linear regression analysis revealed that HEX torque was associated with HER torque (r=0.80; p<0.0001), resulting in the following prediction equation: HERtorque=-0.02+(0.58 * HEXtorque). Paired t-test revealed no difference between directly measured and predicted values of HER torque in adults (mean difference=0.02; 95% CI=-0.115, 0.072) and older adults (mean difference=0.05; 95% CI=-0.02, 0.12). CONCLUSION: The HEX and HER torques were strongly correlated. The prediction equation was valid, accurate, and can be used to estimate HER muscle strength in healthy adults and older adults, requiring only the direct measurement of HEX torque.


Subject(s)
Muscle Strength/physiology , Muscle, Skeletal/physiology , Hip/physiology , Humans , Rotation , Torque
18.
J Biomech ; 104: 109735, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32156442

ABSTRACT

To assess the test - retest reliability and sensitivity of an instrument developed to measure the passive mechanical properties of the midfoot joint complex (MFJC), nine female and three male healthy young adults were evaluated in two different days by two experienced examiners. After proper participant positioning on the instrument, the left forefoot was passively moved from eversion (20°) to inversion (45°) at 2°/s, while the rearfoot and shank were kept immobile. From the instrument's sensing units (torque meter and potentiometer at 100 Hz), passive torque and angle data were registered. Passive stiffness was calculated as the instantaneous slope of the torque vs. angle curve. Therefore, the variables analyzed were resting angle, passive torques and stiffnesses during inversion and eversion through the intraclass correlation coefficient (ICC3,3), standard error of measurement (SEM) and minimal detectable change (MDC95). For the resting angle, ICC3,3 ranged from 0.85 to 0.91, SEM ranged from 1.54° to 1.95° and MDC95 ranged from 4.26° to 5.41°. For the torques, ICC3,3 ranged from 0.85 to 0.97, SEM ranged from 0.09Nm to 0.42Nm and MDC95 ranged from 0.26Nm to 1.16Nm. Finally, for the stiffnesses, ICC3,3 ranged from 0.79 to 0.98, SEM ranged from 0.01Nm/° to 0.04Nm/° and MDC95 ranged from 0.01Nm/° to 0.10 Nm/°. It can be concluded that most of the measurements presented good to excellent reliability with low measurement error. Hence, clinicians and researchers may benefit from the reliable and stable measures provided by the Foot Torsimeter when assessing patients and planning interventions.


Subject(s)
Foot , Biomechanical Phenomena , Female , Humans , Male , Reproducibility of Results , Torque , Young Adult
19.
Braz J Phys Ther ; 24(6): 488-495, 2020.
Article in English | MEDLINE | ID: mdl-31564404

ABSTRACT

BACKGROUND: Reduced trunk and lower limb movement and hip and trunk muscles weakness may compromise the athletes' performance on the modified Star Excursion Balance Test (mSEBT). OBJECTIVE: To investigate the relationship of trunk and lower limb kinematics and strength with the performance on the mSEBT of runners at high risk of injury. METHODS: Thirty-nine runners performed the mSEBT with the dominant limb as the support limb. An Inertial System was used to capture the trunk, hip, knee and ankle movement during the mSEBT. A handheld dynamometer was used to measure the strength of trunk extensors and lateral flexors muscles, and hip extensors, lateral rotators and abductors of the support limb. Multiple regressions were used to investigate if trunk and lower limbs kinematics and trunk and hip muscles strength are associated with performance during the mSEBT. RESULTS: Reduced hip flexion and greater knee flexion range of motion (ROM) were associated with anterior reach in the mSEBT (r2=0.45; p<.001), greater hip flexion ROM was associated with posteromedial reach (r2=0.15; p=.012) and greater knee flexion ROM was associated with posterolateral reach (r2=0.23; p<.001). Hip extensor strength was associated with posteromedial (r2=0.14; p=.017), posterolateral (r2=0.10; p=.038) and composite reaches (r2=0.16; p=.009). CONCLUSION: Hip and knee kinematics in the sagittal plane explained 15-45% of the runners' performance on the mSEBT and hip extensor strength explained 10-16% of the mSEBT performance. These findings provide useful information on the contribution of joints kinematics and strength when evaluating dynamic postural control in runners at high risk of injury.


Subject(s)
Lower Extremity/physiology , Muscle, Skeletal/physiology , Range of Motion, Articular/physiology , Ankle/physiology , Biomechanical Phenomena , Hip/physiology , Humans , Knee/physiology , Movement , Postural Balance/physiology , Torso/physiology
20.
J Biomech ; 98: 109381, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31676084

ABSTRACT

Due to the relative motion among the foot rays, the present study aimed to compare the rigidity as well as the forefoot - rearfoot kinematics obtained from three forefoot tracking marker clusters during walking and foot pronation-supination (PROSUP). Nineteen healthy adults performed six walking trials and ten cycles of foot PROSUP movements recorded by an optoelectronic system. Rearfoot's and forefoot's coordinate system were equal for all setups, only the forefoot's tracking markers locations varied among them, which were: (1st) a typical cluster, focusing on the proximal forefoot, (2nd) a second typical cluster, focusing on the distal forefoot and outer metatarsals, and (3rd) a new cluster proposition, focusing on the distal forefoot and central metatarsals. Cluster rigidity was the normalized intra-markers residual, and forefoot - rearfoot angles were the forefoot motion relative to the rearfoot at the peak of each plane of motion. Repeated-measures ANOVA with pairwise comparisons (α=0.05) revealed that the 3rd cluster had the smallest residual (p < 0.001) in comparison with the other clusters for both walking and PROSUP. Differences between forefoot - rearfoot angles were found in the sagittal plane for walking (p < 0.001), but not for PROSUP (p > 0.686). In the frontal and transverse planes, all clusters showed different forefoot - rearfoot angles (p < 0.001) for both walking and PROSUP. The 1st cluster showed smaller ROM in the three planes during walking, and the 3rd cluster was the only that showed forefoot - rearfoot inversion during maximum pronation. Therefore, the new forefoot tracking marker cluster proposition (3rd cluster) captured different forefoot - rearfoot kinematics and can be recommended when the objective is to maximize the cluster rigidity.


Subject(s)
Foot/physiology , Mechanical Phenomena , Pronation , Supination , Walking , Adult , Biomechanical Phenomena , Female , Gait , Humans , Male , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...