Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 903: 166835, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37678531

ABSTRACT

Although hydrochar and biochar have been used as soil conditioners, there is not a clear understanding of how their properties changes due to aging impacts their colloidal particles behavior on the soil system. From this premise, we produced hydrochar and biochar from the same feedstock (cashew bagasse) and aged with different chemical methods: (i) using hydrogen peroxide, (ii) a mixture of nitric and sulfuric acids, and (iii) hot water. It was analyzed the effects of aging on the stability of the carbonaceous materials (CMs) colloids in aqueous medium with different ionic strength (single systems), as well as the stability of the natural-soil colloid when interacting with biochar and hydrochar colloids (binary systems). A chemical composition (C, H, N, and O content) change in CMs due to the chemically induced aging was observed along with minor structural modifications. Chemical aging could increase the amount of oxygen functional groups for both biochar and hydrochar, though in a different level depending on the methodology applied. In this sense, hydrochar was more susceptive to chemical oxidation than biochar. The effectiveness of chemical aging treatments for biochar increased in the order of water < acid < hydrogen peroxide, whereas for hydrochar the order was water < hydrogen peroxide < acid. While the increase in surface oxidation improved the biochar colloidal stability in water medium at different ionic strengths (single systems), the stability and critical coagulation concentration (CCC) slightly changed for hydrochar. Natural-soil clay (NSC) interactions with oxidized carbonaceous material colloids (binary systems) enhanced NSC stability, which is less likely to aggregate. Therefore, the aging of carbonaceous materials modifies the interaction and dynamics of soil small particles, requiring far more attention to the environmental risks due to their application over time.

2.
ACS Nano ; 17(8): 7417-7430, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36877273

ABSTRACT

In the present study we evaluate the effect of superparamagnetic iron oxide nanoparticles (SPIONs) carrying usnic acid (UA) as chemical cargo on the soil microbial community in a dystrophic red latosol (oxysol). Herein, 500 ppm UA or SPIONs-framework carrying UA were diluted in sterile ultrapure deionized water and applied by hand sprayer on the top of the soil. The experiment was conducted in a growth chamber at 25 °C, with a relative humidity of 80% and a 16 h/8 h light-dark cycle (600 lx light intensity) for 30 days. Sterile ultrapure deionized water was used as the negative control; uncapped and oleic acid (OA) capped SPIONs were also tested to assess their potential effects. Magnetic nanostructures were synthesized by a coprecipitation method and characterized by scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), zeta potential, hydrodynamic diameter, magnetic measurements, and release kinetics of chemical cargo. Uncapped and OA-capped SPIONs did not significantly affect soil microbial community. Our results showed an impairment in the soil microbial community exposed to free UA, leading to a general decrease in negative effects on soil-based parameters when bioactive was loaded into the nanoscale magnetic carrier. Besides, compared to control, the free UA caused a significant decrease in microbial biomass C (39%), on the activity of acid protease (59%), and acid phosphatase (23%) enzymes, respectively. Free UA also reduced eukaryotic 18S rRNA gene abundance, suggesting a major impact on fungi. Our findings indicate that SPIONs as bioherbicide nanocarriers can reduce the negative impacts on soil. Therefore, nanoenabled biocides may improve agricultural productivity, which is important for food security due to the need of increasing food production.


Subject(s)
Magnetite Nanoparticles , Magnetite Nanoparticles/chemistry , Soil , Magnetic Iron Oxide Nanoparticles , Water
3.
An Acad Bras Cienc ; 93(4): e29290261, 2021.
Article in English | MEDLINE | ID: mdl-34495201

ABSTRACT

Public universities, and science in general, in Brazil, are under attack from key persons of the government in interviews and articles published in non-scientific journals. Here we look at bibliography data from international science metric platforms (Scival® and Incites®) and official Brazilian agencies such as CAPES and CNPq to reach some conclusions based on scientific analysis. Brazilian Science has shown a steady improvement in quantity and quality over the last 20 years but has recently suffered (since 2015) under severe financial restrictions. An increase in international collaboration also increased citation impact, reaching almost five times the world average. While the medical and natural sciences show the highest impact and prominence, social sciences and the humanities also have spotlight areas with international excellence. Different research institutions and universities offer a variety of production profiles and impacts. This diagnosis shows the need for universities and research institutes in Brazil and funding agencies to undergo strategic planning for definition of mission/vision, goals to be reached, and areas for priority development. Continued support of public universities by the government is necessary for Brazilian autonomy in science and technology and its full integration in the world scientific community.


Subject(s)
Publications , Universities , Brazil
4.
ACS Nano ; 15(5): 8574-8582, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33900719

ABSTRACT

In this work, we explain the origin and the mechanism responsible for the strong enhancement of the Raman signal of sulfur chains encapsulated by single-wall carbon nanotubes by running resonance Raman measurements in a wide range of excitation energies for two nanotube samples with different diameter distributions. The Raman signal associated with the vibrational modes of the sulfur chain is observed when it is confined by small-diameter metallic nanotubes. Moreover, a strong enhancement of the Raman signal is observed for excitation energies corresponding to the formation of excited nanotube-chain-hybrid electronic states. Our hypothesis was further tested by high pressure Raman measurements and confirmed by density functional theory calculations of the electronic density of states of hybrid systems formed by sulfur chains encapsulated by different types of single-wall carbon nanotubes.

5.
Nanotechnology ; 31(49): 495702, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-32990274

ABSTRACT

Phonons play a fundamental role in the electronic and thermal transport of 2D materials which is crucial for device applications. In this work, we investigate the temperature-dependence of A[Formula: see text] and A[Formula: see text] Raman modes of suspended and supported mechanically exfoliated few-layer gallium sulfide (GaS), accessing their relevant thermodynamic Grüneisen parameters and anharmonicity. The Raman frequencies of these two phonons soften with increasing temperature with different [Formula: see text] temperature coefficients. The first-order temperature coefficients θ of A[Formula: see text] mode is ∼ -0.016 cm-1/K, independent of the number of layers and the support. In contrast, the θ of A[Formula: see text] mode is smaller for two-layer GaS and constant for thicker samples (∼ -0.006 2 cm-1 K-1). Furthermore, for two-layer GaS, the θ value is ∼ -0.004 4 cm-1 K-1 for the supported sample, while it is even smaller for the suspended one (∼ -0.002 9 cm-1 K-1). The higher θ value for supported and thicker samples was attributed to the increase in phonon anharmonicity induced by the substrate surface roughness and Umklapp phonon scattering. Our results shed new light on the influence of the substrate and number of layers on the thermal properties of few-layer GaS, which are fundamental for developing atomically-thin GaS electronic devices.

6.
Mater Sci Eng C Mater Biol Appl ; 105: 110080, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31546390

ABSTRACT

To counter the undesired colloidal destabilization of nanoparticles in biologically-compatible media of high ionic strength (i.e. NaCl, phosphate buffer), polymers can be added to nanoparticle suspensions that will be used in biomedical applications. In these suspensions, polymers can promote high colloidal stability by manifestation of steric and/or depletion forces. However, little is known about the influence of these polymers on the interactions between nanoparticles and the biological components of the organism, such as proteins and cells. In this work, it was shown that the addition of the polymers (i) Pluronic-F127 (PF127), (ii) polyethylene glycol (PEG) of different molecular weights - 1.5, 12 and 35 kDa - and (iii) the protein bovine serum albumin (BSA) on colloidal silica nanoparticles (CSNPs; 135 nm) dispersed in phosphate-buffered saline (PBS) largely alter their colloidal stability through different mechanisms. Although all polymers were adsorbed on the CSNP surface, BSA maintained the CSNP dispersion in the medium by electrosteric stabilization mechanisms, while PEG and PF127 led to the occurrence of depletion forces between the particles. In addition, it was found that the interactions between polymers and CSNPs did not prevent proteins to access the nanoparticles' surface and have minimal effect on the formation of the protein corona when they were incubated in human blood plasma. On the other hand, BSA had a greater effect on the CSNP protein corona profile compared to other polymers (PEG and PF127). Together, these results confirm that biocompatible polymers PEG and PF127 can be used as colloidal stabilizing agents for nanoparticles since they preserve the accessibility of biomolecules to the nanoparticle surface, and they have little effect on the protein corona composition.


Subject(s)
Nanoparticles/chemistry , Protein Corona/chemistry , Serum Albumin, Bovine/chemistry , Animals , Cattle , Colloids , Humans , Poloxamer/chemistry , Polyethylene Glycols/chemistry , Silicon Dioxide/chemistry
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 223: 117298, 2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31254751

ABSTRACT

In this paper we present a Raman spectroscopy study of Na3MCO3PO4 (M=Mn, Fe, Co e Ni) carbonophosphates. The insertion of different metals with distinct ionic radii in the MO6 octahedra leads to changes in unit cell volume, thus leading to blueshifts in the energies of the Raman active modes. The experimental data are supported by lattice dynamic calculations and the vibrational properties of the carbonophosphates Na3MCO3PO4 are properly described.

8.
Mater Sci Eng C Mater Biol Appl ; 100: 363-377, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30948072

ABSTRACT

The interaction of single-layer graphene oxide (SLGO) and multi-layered graphene oxide (MLGO) with a cell culture medium (i.e. DMEM) was studied by evaluating fetal bovine serum (FBS) protein corona formation towards in vitro nanotoxicity assessment and nanobiointeractions. SLGO and MLGO exhibited different colloidal behavior in the culture medium, which was visualized by cryogenic transmission electron microscopy in situ analysis. Exploring proteomics and bioinformatics tools, 394 and 290 proteins were identified on the SLGO and MLGO hard corona compositions, respectively. From this amount, 115 proteins were exclusively detected on the SLGO and merely 11 on MLGO. SLGO enriched FBS proteins involved in metabolic processes and signal transduction, while MLGO enriched proteins involved in cellular development/structure, and lipid transport/metabolic processes. Such a distinct corona profile is due to differences on surface chemistry, aggregation behavior and the surface area of GO materials. Hydrophilic interactions were found to play a greater role in protein adsorption by MLGO than SLGO. Our results point out implications for in vitro studies of graphene oxide materials concerning the effective dose delivered to cells and corona bioactivity. Finally, we demonstrated the importance of integrating conventional and modern techniques thoroughly to understand the GO-FBS complexes towards more precise, reliable and advanced in vitro nanotoxicity assessment.


Subject(s)
Blood Proteins/chemistry , Culture Media/chemistry , Graphite/chemistry , Nanoparticles/toxicity , Protein Corona/chemistry , Toxicity Tests , Animals , Cattle , Proteomics , Water
9.
Article in English | MEDLINE | ID: mdl-29223053

ABSTRACT

MoO3 nanoribbons were studied under different pressure conditions ranging from 0 to 21GPa at room temperature. The effect of the applied pressure on the spectroscopic and morphologic properties of the MoO3 nanoribbons was investigated by means of Raman spectroscopy and scanning electron microscopy techniques. The pressure dependent Raman spectra of the MoO3 nanoribbons indicate that a structural phase transition occurs at 5GPa from the orthorhombic α-MoO3 phase (Pbnm) to the monoclinic MoO3-II phase (P21/m), which remains stable up to 21GPa. Such phase transformation occurs at considerably lower pressure than the critical pressure for α-MoO3 microcrystals (12GPa). We suggested that the applanate morphology combined with the presence of crystalline defects in the sample play an important role in the phase transition of the MoO3 nanoribbons. Frequencies and linewidths of the Raman bands as a function of pressure also suggest a pressure-induced morphological change and the decreasing of the nanocrystal size. The observed spectroscopic changes are supported by electron microscopy images, which clearly show a pressure-induced morphologic change in MoO3 nanoribbons.

10.
Sci Total Environ ; 607-608: 1479-1486, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28764138

ABSTRACT

In this work, industrial grade multi-walled carbon nanotubes (MWCNT) were coated with humic acid (HA) for the first time by means of a milling process, which can be considered an eco-friendly mechanochemical method to prepare materials and composites. The HA-MWCNT hybrid material was characterized by atomic force microscopy (AFM), scanning electron microscopies (SEM and STEM), X-ray photoelectron spectroscopy (XPS), termogravimetric analysis (TGA), and Raman spectroscopy. STEM and AFM images demonstrated that the MWCNTs were efficiently coated by the humic acid, thus leading to an increase of 20% in the oxygen content at the nanotube surface as observed by the XPS data. After the milling process, the carbon nanotubes were shortened as unveiled by SEM images and the values of ID/IG intensity ratio increased due to shortening of the nanotubes and increasing in the number defects at the graphitic structure of carbon nanotubes walls. The analysis of TGA data showed that the quantity of the organic matter of HA on the nanotube surface was 25%. The HA coating was responsible to favor the dispersion of MWCNTs in ultrapure water (i.e. -42mV, zeta-potential value) and to improve their capacity for copper removal. HA-MWCNTs hybrid material adsorbed 2.5 times more Cu(II) ions than oxidized MWCNTs with HNO3, thus evidencing that it is a very efficient adsorbent material for removing copper ions from reconstituted water. The HA-MWCNTs hybrid material did not show acute ecotoxicity to the tested aquatic model organisms (Hydra attenuata, Daphnia magna, and Danio rerio embryos) up to the highest concentration evaluated (10mgL-1). The results allowed concluding that the mechanochemical method is effective to coat carbon nanotubes with humic acid, thus generating a functional hybrid material with low aquatic toxicity and great potential to be applied in environmental nanotechnologies such as the removal of heavy metal ions from water.


Subject(s)
Copper/isolation & purification , Humic Substances , Nanotubes, Carbon , Water Pollutants, Chemical/isolation & purification , Animals , Daphnia , Ecotoxicology , Ions , Water
11.
ACS Appl Mater Interfaces ; 6(5): 3437-47, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24524580

ABSTRACT

We report here that the surface topography of colloidal mesoporous silica nanoparticles (MSNs) plays a key role on their bionano-interactions by driving the adsorption of biomolecules on the nanoparticle through a matching mechanism between the surface cavities characteristics and the biomolecules stereochemistry. This conclusion was drawn by analyzing the biophysicochemical properties of colloidal MSNs in the presence of single biomolecules, such as alginate or bovine serum albumin (BSA), as well as dispersed in a complex biofluid, such as human blood plasma. When dispersed in phosphate buffered saline media containing alginate or BSA, monodisperse spherical MSNs interact with linear biopolymers such as alginate and with a globular protein such as bovine serum albumin (BSA) independently of the surface charge sign (i.e. positive or negative), thus leading to a decrease in the surface energy and to the colloidal stabilization of these nanoparticles. In contrast, silica nanoparticles with irregular surface topographies are not colloidally stabilized in the presence of alginate but they are electrosterically stabilized by BSA through a sorption mechanism that implies reversible conformation changes of the protein, as evidenced by circular dichroism (CD). The match between the biomolecule size and stereochemistry with the nanoparticle surface cavities characteristics reflects on the nanoparticle surface area that is accessible for each biomolecule to interact and stabilize any non-rigid nanoparticles. On the other hand, in contact with variety of biomolecules such as those present in blood plasma (55%), MSNs are colloidally stabilized regardless of the topography and surface charge, although the identity of the protein corona responsible for this stabilization is influenced by the surface topography and surface charge. Therefore, the biofluid in which nanoparticles are introduced plays an important role on their physicochemical behavior synergistically with their inherent characteristics (e.g., surface topography).


Subject(s)
Nanoparticles/chemistry , Plasma/chemistry , Serum Albumin, Bovine/chemistry , Silicon Dioxide/chemistry , Adsorption , Animals , Cattle , Colloids , Humans , Surface Properties
12.
Nanomedicine ; 8(6): 935-40, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22197722

ABSTRACT

In this article, we report the use of nanostructured silver vanadate as a promising antibacterial additive to water-based paints that has potential for applications in bathrooms, kitchens, and hospital environments. This hybrid nanomaterial was prepared by a simple and fast precipitation reaction involving silver nitrate and ammonium vanadate, dismissing the hydrothermal treatment. The preparation involved using Ag vanadate nanowires (ß-AgVO(3)) with diameters ranging from 20 to 60 nm and decorated with silver (Ag) nanoparticles (NPs) with diameters ranging from 5 to 40 nm. Results of antibacterial tests show that this hybrid material has a promising antibacterial activity against several types of bacteria strains, such as methicillin-resistant Staphylococcus aureas (MRSA), Enterococcus faecalis, Escherichia coli, and Salmonella enterica Typhimurium. The evaluated material exhibits antibacterial activity 30 times larger than that of Oxacillin. In addition, this nanomaterial was tested as an antibacterial additive to water-based paints, and formulations with 1% show a 4-mm inhibition zone against a MRSA strain.


Subject(s)
Bacterial Physiological Phenomena/drug effects , Nanostructures/administration & dosage , Nanostructures/chemistry , Paint/microbiology , Silver/pharmacology , Vanadates/pharmacology , Water/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Survival/drug effects , Paint/analysis , Silver/chemistry , Vanadates/chemistry
13.
Chemistry ; 17(11): 3228-37, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21328494

ABSTRACT

The deposition of mesoporous silica (SiO(2)) on carbon nanotubes (CNTs) has opened up a wide range of assembling possibilities by exploiting the sidewall of CNTs and organosilane chemistry. The resulting systems may be suitable for applications in catalysis, energy conversion, environmental chemistry, and nanomedicine. However, to promote the condensation of silicon monomers on the nanotube without producing segregated particles, (OR)(4-x)SiO(x)(x-) units must undergo nucleophilic substitution by groups localized on the CNT sidewall during the transesterification reaction. In order to achieve this preferential attachment, we have deposited silica on oxidized carbon nanotubes (single-walled and multiwalled) in a sol-gel process that also involved the use of a soft template (cetyltrimethylammonium bromide, CTAB). In contrast to the simple approach normally used to describe the attachment of inorganic compounds on CNTs, SiO(2) nucleation on the tube is a result of nucleophilic attack mainly by hydroxyl radicals, localized in a very complex surface chemical environment, where various oxygenated groups are covalently bonded to the sidewall and carboxylated carbonaceous fragments (CCFs) are adsorbed on the tubes. Si-O-C covalent bond formation in the SiO(2)-CNT hybrids was observed even after removal of the CCFs with sodium hydroxide. By adding CTAB, and increasing the temperature, time, and initial amount of the catalyst (NH(4)OH) in the synthesis, the SiO(2) coating morphology could be changed from one of nanoparticles to mesoporous shells. Concomitantly, pore ordering was achieved by increasing the amount of CTAB. Furthermore, preferential attachment on the sidewall results mostly in CNTs with uncapped ends, having sites (carboxylic acids) that can be used for further localized reactions.

14.
Phys Chem Chem Phys ; 12(7): 1518-24, 2010 Feb 21.
Article in English | MEDLINE | ID: mdl-20126764

ABSTRACT

The interaction of chloroform (CHCl(3)) with single-wall carbon nanotubes (SWCNT) is investigated using both first principles calculations based on Density Functional Theory and vibrational spectroscopy experiments. CHCl(3) adsorption on pristine, defective, and carboxylated SWCNTs is simulated, thereby gaining a good understanding of the adsorption process of this molecule on SWCNT surfaces. The results predict a physisorption regime in all cases. These calculations point out that SWCNTs are promising materials for extracting trihalomethanes from the environment. Theoretical predictions on the stability of the systems SWCNT-CCl(2) and SWCNT-COCCl(3) are confirmed by experimental TGA data and Fourier Transform Infrared Spectroscopy (FT-IR) experiments. Results from resonance Raman scattering experiments indicate that electrons are transferred from the SWCNTs to the attached groups and these results are in agreement with the predictions made by ab initio calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...