Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res Bull ; 149: 60-74, 2019 07.
Article in English | MEDLINE | ID: mdl-31004733

ABSTRACT

Sildenafil is a phosphodiesterase 5 inhibitor used for the treatment of erectile dysfunction and pulmonary hypertension. Proconvulsant effect is a serious adverse event associated with sildenafil use. Here, we investigated the possible proconvulsant effects of sildenafil in pilocarpine (PILO)-induced seizures model, which mimics some aspects of temporal lobe epilepsy. We also evaluated sildenafil's effects on hippocampal markers related to PILO-induced seizure, for instance, acetylcholinesterase (AChE) activity, oxidative stress and nitric oxide (NO) markers, namely nitrite, inducible NO synthase (iNOS) and neuronal NOS (nNOS). The influences of muscarinic receptors blockade on sildenafil proconvulsant effects and brain nitrite levels were also evaluated. Male mice were submitted to single or repeated (7 days) sildenafil administration (2.5, 5, 10 and 20 mg/kg). Thirty minutes later, PILO was injected and mice were further evaluated for 1 h for seizure activity. Sildenafil induced a dose- and time-progressive proconvulsant effect in PILO-induced seizures. Sildenafil also potentiated the inhibitory effect of PILO in AChE activity and induced a further increase in nitrite levels and pro-oxidative markers, mainly in the hippocampus. Repeated sildenafil treatment also increased the hippocampal expression of iNOS and nNOS isoforms, while the blockade of muscarinic receptors attenuated both sildenafil-induced proconvulsant effect and brain nitrite changes. Our data firstly demonstrated the proconvulsant effect of sildenafil in PILO-model of seizures. This effect seems to be related to an increased cholinergic-nitrergic tone and pro-oxidative brain changes. Also, our findings advert to caution in using sildenafil for patients suffering from neurological conditions that reduces seizure threshold, such as epilepsy.


Subject(s)
Seizures/etiology , Sildenafil Citrate/adverse effects , Sildenafil Citrate/pharmacology , Acetylcholinesterase/metabolism , Animals , Cyclic GMP/metabolism , Hippocampus/drug effects , Male , Mice , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Phosphodiesterase 5 Inhibitors/pharmacology , Pilocarpine/pharmacology , Reactive Oxygen Species/metabolism , Seizures/physiopathology , Sildenafil Citrate/metabolism
2.
Biomed Pharmacother ; 109: 429-439, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30399578

ABSTRACT

Kindling is a model for studying epileptogenesis and associated neuropsychiatric conditions. The antiepileptic drug levetiracetam (LEV) presents anti-kindling properties, but some severe neuropsychiatric events, especially depression, have been associated with its use in epileptic patients. The positive modulation of glucagon-like peptide-1 (GLP-1) receptors emerged as a potential target for the treatment of epilepsy and other neurological disorders. Here, we investigated behavioral and neurochemical effects of liraglutide (LIRA), a GLP-1 receptor agonist, alone or combined with LEV in mice subjected to PTZ-induced kindling. Male mice received PTZ on alternate days for 21 days. Before PTZ, the animals received LIRA, LEV (alone or in combination with LIRA) or saline. After seizures staging according to Racine's scale, behavioral evaluations were performed to verify anxiety-, depressive-like and cognitive performance. Brain oxidative alterations and BDNF levels were also measured. LEV showed anti-kindling properties, but aggravated depressive-like behavior in PTZ-kindling. In control conditions, LEV induced a pro-depressant effect and impaired avoidance memory retention. LIRA delayed but did not prevent the full kindling development. LIRA prevented the depressive-like behavior induced by PTZ kindling and PTZ + LEV. LEV + LIRA protected against PTZ-induced anxiety-like alterations and impairments in locomotion and cognition. Furthermore, LEV + LIRA reduced nitrite levels and lipid peroxidation in the hippocampus and prefrontal cortex, while it increased reduced glutathione levels in all evaluated brain areas. LIRA or LEV + LIRA increased hippocampal BDNF levels. In conclusion, our results showed that LIRA can be a promising adjunctive therapy for epilepsy-related neuropsychiatric comorbidities and to improve the management of antiepileptic drug associated behavioral adverse effects.


Subject(s)
Antioxidants/metabolism , Brain-Derived Neurotrophic Factor/biosynthesis , Brain/metabolism , Glucagon-Like Peptide 1/agonists , Kindling, Neurologic/metabolism , Levetiracetam/administration & dosage , Liraglutide/administration & dosage , Animals , Avoidance Learning/drug effects , Avoidance Learning/physiology , Brain/drug effects , Comorbidity , Drug Therapy, Combination , Kindling, Neurologic/drug effects , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice , Pentylenetetrazole/toxicity , Up-Regulation/drug effects , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...