Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Med Sci Sports Exerc ; 56(6): 1094-1107, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38306312

ABSTRACT

PURPOSE: This study aimed to examine the recovery kinetics (i.e., time-dependent changes) of performance-related variables between two 120-min male football games performed 3 d apart with and without carbohydrate supplementation. METHODS: Twenty male players (20 ± 1 yr; body fat, 14.9% ± 5.1%; maximal oxygen consumption, 59.4 ± 3.7 mL·kg -1 ·min -1 ) participated in two 120-min football games (G1, G2) according to a randomized, two-trial, repeated-measures, crossover, double-blind design. Participants received carbohydrate/placebo supplements during recovery between games. Field activity was monitored during the games. Performance testing and blood sampling were performed before and at 90 and 120 min of each game. Muscle biopsies were collected at baseline and at 90 and 120 min of G1 and pre-G2. RESULTS: Compared with G1, G2 was associated with reduced total distance (10,870 vs 10,685 m during 90 min and 3327 vs 3089 m during extra 30 min; P = 0.007-0.038), average (6.7 vs 6.2 km/h during extra 30-min game-play; P = 0.007) and maximal speed (32.2 vs 30.2 km/h during 90 min and 29.0 vs 27.9 km/h during extra 30 min; P < 0.05), accelerations/decelerations ( P < 0.05), and mean heart rate ( P < 0.05). Repeated sprint ability ( P < 0.001), jumping ( P < 0.05), and strength ( P < 0.001) performance were compromised before and during G2. Muscle glycogen was not restored at G2 baseline ( P = 0.005). Extended game-play reduced lymphocyte, erythrocyte counts, hematocrit, hemoglobin, reduced glutathione ( P < 0.05) and increased delayed onset of muscle soreness, creatine kinase activity, blood glycerol, ammonia, and protein carbonyls ( P < 0.05) before and during G2. Pax7 + ( P = 0.004) and MyoD + cells ( P = 0.019) increased at baseline G2. Carbohydrate supplementation restored performance and glycogen, reduced glycerol and delayed onset of muscle soreness responses, and increased leukocyte counts and Pax7 + and MyoD + cells. CONCLUSIONS: Results suggest that extended football games induce a prolonged recovery of performance, which may be facilitated by carbohydrate supplementation during a congested game fixture.


Subject(s)
Athletic Performance , Cross-Over Studies , Dietary Carbohydrates , Muscle, Skeletal , Soccer , Humans , Male , Double-Blind Method , Young Adult , Soccer/physiology , Athletic Performance/physiology , Muscle, Skeletal/physiology , Dietary Carbohydrates/administration & dosage , Glycogen/metabolism , Oxygen Consumption , Dietary Supplements , Heart Rate
2.
Eur J Nutr ; 62(4): 1767-1782, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36828945

ABSTRACT

PURPOSE: To investigate the association between redox status in erythrocytes and skeletal muscle with dietary nutrient intake and markers of physical fitness and habitual physical activity (PA). METHODS: Forty-five young physically active men were assessed for body composition, dietary nutrient intake, muscle strength, cardiorespiratory capacity and habitual PA. Blood and muscle samples were collected to estimate selected redox biomarkers. Partial correlation analysis was used to evaluate the independent relationship of each factor with redox biomarkers. RESULTS: Dietary cysteine intake was positively correlated (p < 0.001) with both erythrocyte (r = 0.697) and muscle GSH (0.654, p < 0.001), erythrocyte reduced/oxidized glutathione ratio (GSH/GSSG) (r = 0.530, p = 0.001) and glutathione reductase (GR) activity (r = 0.352, p = 0.030) and inversely correlated with erythrocyte protein carbonyls (PC) levels (r = - 0.325; p = 0.046). Knee extensors eccentric peak torque was positively correlated with GR activity (r = 0.355; p = 0.031) while, one-repetition maximum in back squat exercise was positively correlated with erythrocyte GSH/GSSG ratio (r = 0.401; p = 0.014) and inversely correlated with erythrocyte GSSG and PC (r = - 0.441, p = 0.006; r = - 0.413, p = 0.011 respectively). Glutathione peroxidase (GPx) activity was positively correlated with step count (r = 0.520; p < 0.001), light (r = 0.406; p = 0.008), moderate (r = 0.417; p = 0.006), moderate-to-vigorous (r = 0.475; p = 0.001), vigorous (r = 0.352; p = 0.022) and very vigorous (r = 0.326; p = 0.035) PA. Muscle GSSG inversely correlated with light PA (r = - 0.353; p = 0.022). CONCLUSION: These results indicate that dietary cysteine intake may be a critical element for the regulation of glutathione metabolism and redox status in two different tissues pinpointing the independent significance of cysteine for optimal redox regulation. Musculoskeletal fitness and PA levels may be predictors of skeletal muscle, but not erythrocyte, antioxidant capacity. TRIAL REGISTRATION: Registry: ClinicalTrials.gov, identifier: NCT03711838, date of registration: October 19, 2018.


Subject(s)
Cysteine , Glutathione , Male , Humans , Glutathione Disulfide/metabolism , Glutathione/metabolism , Oxidation-Reduction , Antioxidants/metabolism , Muscle, Skeletal/metabolism , Eating , Physical Fitness , Biomarkers/metabolism , Oxidative Stress
3.
Med Sci Sports Exerc ; 55(1): 80-92, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35977104

ABSTRACT

PURPOSE: This study evaluated how extended match time (90 + 30 min) affected physiological responses and fatigue in male soccer players. METHODS: Twenty competitive players (mean ± SD: age, 20 ± 1 yr; maximal oxygen uptake, 59 ± 4 mL·min -1 ·kg -1 ) completed an experimental match with their activity pattern and heart rate assessed throughout the game, whereas countermovement jump performance and repeated sprint ability were tested and quadriceps muscle biopsies and venous blood samples were taken at baseline and after 90 and 120 min of match play. RESULTS: Less high-intensity running (12%) was performed in extra time in association with fewer intense accelerations and decelerations per minute compared with normal time. Peak sprint speed was 11% lower in extra time compared with normal time, and fatigue also manifested in impaired postmatch repeated sprint ability and countermovement jump performance (all P < 0.05). Muscle glycogen declined from 373 ± 59 mmol·kg -1 dry weight (dw) at baseline to 266 ± 64 mmol·kg -1 dw after 90 min, with a further decline to 186 ± 56 mmol·kg -1 dw after extra time ( P < 0.05) and with single-fiber analyses revealing depleted or very low glycogen levels in ~75% of both slow and fast twitch fibers. Blood glucose did not change during the first 90-min but declined ( P < 0.05) to 81 ± 8 mg·dL -1 after extra time. Plasma glycerol and ammonia peaked at 236 ± 33 mg·dL -1 and 75 ± 21 µmol·L -1 after the extra period. CONCLUSIONS: These findings demonstrate exacerbated fatigue after extra time compared with normal time, which seems to be associated with muscle glycogen depletion, reductions in blood glucose levels, and hyperammonemia. Together, this points to metabolic disturbances being a major part of the integrated and multifaceted fatigue response during extended soccer match play.


Subject(s)
Athletic Performance , Running , Soccer , Humans , Male , Young Adult , Adult , Soccer/physiology , Athletic Performance/physiology , Blood Glucose , Running/physiology , Glycogen , Muscle Fatigue
4.
Medicina (Kaunas) ; 60(1)2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38256335

ABSTRACT

Background and Objectives: Inflammation and dysregulation in the intestinal barrier function in acute pancreatitis (AP) trigger pancreatic lesions, systemic inflammatory response, and multiple organ dysfunction. Eugenol, as the main component of clove (Syzygium aromaticum), is known for its antioxidant and anti-inflammatory properties. We studied the potentially beneficial effect of eugenol in a rodent model of biliopancreatic duct ligation-induced AP. Materials and Methods: Rats were randomly divided into three groups: Sham, AP, and AP + eugenol (15 mg/kg/day). Serum TNFα, IL-6, IL-18, and resistin levels, as well as IL-6, TNFα, MPO, HMGB1, and CD45 tissue expression, were determined at various timepoints after the induction of AP. Results: Eugenol attenuated hyperemia and inflammatory cell infiltration in the intestinal mucosal, submucosal, and muscular layers. IL-6 and resistin serum levels were significantly reduced in the AP + eugenol group, while serum TNFα and IL-18 levels remained unaffected overall. TNFα pancreatic and intestinal expression was attenuated by eugenol at 72 h, while IL-6 expression was affected only in the pancreas. MPO, CD45, and HMGB1 intestinal expression was significantly reduced in eugenol-treated rats. Conclusions: Eugenol managed to attenuate the inflammatory response in the intestine in duct ligation-induced AP in rats.


Subject(s)
HMGB1 Protein , Pancreatitis , Rats , Animals , Pancreatitis/drug therapy , Eugenol/pharmacology , Eugenol/therapeutic use , Interleukin-18 , Resistin , Acute Disease , Interleukin-6 , Tumor Necrosis Factor-alpha , Intestines , Leukocytes
5.
J Clin Med ; 11(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35683510

ABSTRACT

The supraclavicular artery island flap (SCAIF) is a reliable, easy-to-harvest and versatile fasciocutaneous flap that can be used for pharynx reconstruction. Instead of free flaps, it requires no microsurgical technique, reduced operating time and postoperative care, making it an ideal option, especially during the COVID-19 pandemic. The primary aim of our study was to present two cases of a total laryngectomy and reconstruction with the SCAIF during the pandemic. The secondary aim was to review the literature concerning surgical techniques, complications and contradictions of the SCAIF for pharynx reconstruction. A literature search was performed using the PubMed, ScienceDirect, Wiley Online Library, Google Scholar, Scopus and Cochrane Library databases, using MeSH terms: larynx AND reconstruction AND flap. Ten full-text articles comprising 92 patients with 93 supraclavicular flaps were included. The patch graft, pharyngeal interposition graft, tubularization or "U"-shaped SCAIF were the main surgical techniques. Pharyngocutaneous fistula was the most frequent postoperative complication, especially in patients with previous radiotherapy, but just 19% of patients required secondary intervention. The lack of donor-site morbidity, low flap loss rates and stenosis rates favored this reconstructive option. This review underlined that the SCAIF has comparable results with other reconstructive options, consolidating this flap in the workhorse of pharynx reconstruction.

6.
Antioxidants (Basel) ; 9(9)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32942555

ABSTRACT

Redox status (RS) perturbations and inflammation are fundamental features of chronic kidney disease (CKD) that are substantially exacerbated in end-stage renal disease (ESRD). This study aimed at investigating the efficacy of a 6-month intradialytic exercise training program on RS, inflammation and physical performance in patients with ESRD. Twenty hemodialysis (HD) patients (17 males, three females) were randomly assigned to either an intradialytic training (bedside cycling) group (TR; n = 10) or a control group (CON; n = 10) for 6 months. Anthropometrics [body mass and height, body mass index (BMI), body composition], physical performance (VO2peak), functional capacity [North Staffordshire Royal Infirmary (NSRI) walk test, sit-to-stand test (STS-60)], quality of life (short form-36 (SF-36) as well as RS [thiobarbituric acid reactive substances (TBARS), protein carbonyls (PC), reduced (GSH) and oxidized (GSSG) glutathione, GSH/GSSG, total antioxidant capacity (TAC), catalase activity (CAT)] and high-sensitivity C-reactive protein (hs-CRP) were assessed at baseline and after the 6-month intervention. Peak oxygen consumption (VO2peak) increased by 15% only in TR (p < 0.01). Performance in NSRI, STS-60 and SF-36 improved by 4-13% only in TR (p < 0.01). Exercise training reduced TBARS (by 28%), PC (by 31%) and hs-CRP (by 15%), and elevated GSH (by 52%), GSH/GSSG (by 51%), TAC (by 59%) and CAT (by 15%) (p < 0.01). These findings suggest that engagement in chronic intradialytic cardiovascular exercise alters RS, reduces inflammation and improves performance in patients with ESRD.

7.
Case Rep Surg ; 2019: 3276919, 2019.
Article in English | MEDLINE | ID: mdl-31073417

ABSTRACT

INTRODUCTION: Idiopathic sclerosing encapsulating peritonitis or abdominal cocoon syndrome (ACS) is a rare anatomical deformity characterized by the partial or complete encasement of the small intestine with fibrotic peritoneum. 193 cases have been described worldwide. The aim of this study is to present two cases of ACS successfully treated at the Surgical Clinic of the Agios Dimitrios General Hospital in Thessaloniki, Greece. PRESENTATION OF CASES: Two men (55 and 54 years old) presented to the emergency department complaining of abdominal pain, distension, constipation, nausea, and vomiting. Neither of these patients had any previous operations. The computed tomography scan of the first patient showed considerable distension of the small bowel, suggestive of internal herniation. The second case showed distention of the jejunum with no obvious cause. Both patients underwent emergency surgery. Intraoperatively, it was found that a fibrous membrane had completely covered the small intestine of the first patient and the jejunum and part of the large intestine of the second patient. Adhesiolysis and partial excision of the membrane were performed in both cases. DISCUSSION: ACS is a rare cause of small bowel obstruction. Although conservative management with immunosuppressants and steroids has been described, surgical treatment is the gold standard. CONCLUSION: Preoperative clinical suspicion of this disease can help determine the diagnosis and protect surgeons from intraoperative "surprises".

8.
Nutrients ; 10(4)2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29659539

ABSTRACT

The effects of protein supplementation on performance recovery and inflammatory responses during a simulated one-week in-season microcycle with two games (G1, G2) performed three days apart were examined. Twenty football players participated in two trials, receiving either milk protein concentrate (1.15 and 0.26 g/kg on game and training days, respectively) (PRO) or an energy-matched placebo (1.37 and 0.31 g/kg of carbohydrate on game and training days, respectively) (PLA) according to a randomized, repeated-measures, crossover, double-blind design. Each trial included two games and four daily practices. Speed, jump height, isokinetic peak torque, and muscle soreness of knee flexors (KF) and extensors (KE) were measured before G1 and daily thereafter for six days. Blood was drawn before G1 and daily thereafter. Football-specific locomotor activity and heart rate were monitored using GPS technology during games and practices. The two games resulted in reduced speed (by 3-17%), strength of knee flexors (by 12-23%), and jumping performance (by 3-10%) throughout recovery, in both trials. Average heart rate and total distance covered during games remained unchanged in PRO but not in PLA. Moreover, PRO resulted in a change of smaller magnitude in high-intensity running at the end of G2 (75-90 min vs. 0-15 min) compared to PLA (P = 0.012). KE concentric strength demonstrated a more prolonged decline in PLA (days 1 and 2 after G1, P = 0.014-0.018; days 1, 2 and 3 after G2, P = 0.016-0.037) compared to PRO (days 1 after G1, P = 0.013; days 1 and 2 after G2, P = 0.014-0.033) following both games. KF eccentric strength decreased throughout recovery after G1 (PLA: P=0.001-0.047-PRO: P =0.004-0.22) in both trials, whereas after G2 it declined throughout recovery in PLA (P = 0.000-0.013) but only during the first two days (P = 0.000-0.014) in PRO. No treatment effect was observed for delayed onset of muscle soreness, leukocyte counts, and creatine kinase activity. PRO resulted in a faster recovery of protein and lipid peroxidation markers after both games. Reduced glutathione demonstrated a more short-lived reduction after G2 in PRO compared to PLA. In summary, these results provide evidence that protein feeding may more efficiently restore football-specific performance and strength and provide antioxidant protection during a congested game fixture.


Subject(s)
Athletic Performance/physiology , Dietary Proteins/administration & dosage , Dietary Supplements , Football , Muscle, Skeletal/physiology , Cross-Over Studies , Double-Blind Method , Humans , Male , Young Adult
9.
Br J Nutr ; 118(3): 189-200, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28831951

ABSTRACT

The ubiquitin-proteasome system (UPS) is the main cellular proteolytic system responsible for the degradation of normal and abnormal (e.g. oxidised) proteins. Under catabolic conditions characterised by chronic inflammation, the UPS is activated resulting in proteolysis, muscle wasting and impaired muscle function. Milk proteins provide sulphur-containing amino acid and have been proposed to affect muscle inflammation. However, the response of the UPS to aseptic inflammation and protein supplementation is largely unknown. The aim of this study was to investigate how milk protein supplementation affects UPS activity and skeletal muscle function under conditions of aseptic injury induced by intense, eccentric exercise. In a double-blind, cross-over, repeated measures design, eleven men received either placebo (PLA) or milk protein concentrate (PRO, 4×20 g on exercise day and 20 g/d for the following 8 days), following an acute bout of eccentric exercise (twenty sets of fifteen eccentric contractions at 30°/s) on an isokinetic dynamometer. In each trial, muscle biopsies were obtained from the vastus lateralis muscle at baseline, as well as at 2 and 8 d post exercise, whereas blood samples were collected before exercise and at 6 h, 1 d, 2 d and 8 d post exercise. Muscle strength and soreness were assessed before exercise, 6 h post exercise and then daily for 8 consecutive days. PRO preserved chymotrypsin-like activity and attenuated the decrease of strength, facilitating its recovery. PRO also prevented the increase of NF-κB phosphorylation and HSP70 expression throughout recovery. We conclude that milk PRO supplementation following exercise-induced muscle trauma preserves proteasome activity and attenuates strength decline during the pro-inflammatory phase.


Subject(s)
Exercise , Inflammation/metabolism , Milk Proteins/administration & dosage , Proteasome Endopeptidase Complex/metabolism , Quadriceps Muscle/metabolism , Adult , Cross-Over Studies , Dietary Supplements , Double-Blind Method , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Humans , Male , Muscle Strength/physiology , NF-kappa B/genetics , NF-kappa B/metabolism , Pain/prevention & control , Pain Measurement , Phosphorylation , Sports Nutritional Physiological Phenomena , Young Adult
10.
Exp Gerontol ; 47(6): 417-24, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22449457

ABSTRACT

Aging results in a significant decline in aerobic capacity and impaired mitochondrial function. We have tested the effects of moderate physical activity on aerobic capacity and a single bout of exercise on the expression profile of mitochondrial biogenesis, and fusion and fission related genes in skeletal muscle of human subjects. Physical activity attenuated the aging-associated decline in VO2 max (p<0.05). Aging increased and a single exercise bout decreased the expression of nuclear respiratory factor-1 (NRF1), while the transcription factor A (TFAM) expression showed a strong relationship with VO(2max) and increased significantly in the young physically active group. Mitochondrial fission representing FIS1 was induced by regular physical activity, while a bout of exercise decreased fusion-associated gene expression. The expression of polynucleotide phosphorylase (PNPase) changed inversely in young and old groups and decreased with aging. The A2 subunit of cyclic AMP-activated protein kinase (AMPK) was induced by a single bout of exercise in skeletal muscle samples of both young and old subjects (p<0.05). Our data suggest that moderate levels of regular physical activity increases a larger number of mitochondrial biogenesis-related gene expressions in young individuals than in aged subjects. Mitochondrial fission is impaired by aging and could be one of the most sensitive markers of the age-associated decline in the adaptive response to physical activity.


Subject(s)
Aging/physiology , Exercise/physiology , Mitochondrial Proteins/biosynthesis , Muscle, Skeletal/physiology , Adult , Aged , Aging/genetics , Aging/metabolism , Gene Expression Regulation/physiology , Humans , Male , Middle Aged , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/physiology , Mitochondrial Proteins/genetics , Muscle Proteins/biosynthesis , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Oxygen Consumption/physiology , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction/methods , Young Adult
11.
Free Radic Biol Med ; 51(2): 417-23, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21569841

ABSTRACT

8-Oxo-7,8-dihydroguanine (8-oxoG) accumulates in the genome over time and is believed to contribute to the development of aging characteristics of skeletal muscle and various aging-related diseases. Here, we show a significantly increased level of intrahelical 8-oxoG and 8-oxoguanine-DNA glycosylase (OGG1) expression in aged human skeletal muscle compared to that of young individuals. In response to exercise, the 8-oxoG level was lastingly elevated in sedentary young and old subjects, but returned rapidly to preexercise levels in the DNA of physically active individuals independent of age. 8-OxoG levels in DNA were inversely correlated with the abundance of acetylated OGG1 (Ac-OGG1), but not with total OGG1, apurinic/apyrimidinic endonuclease 1 (APE1), or Ac-APE1. The actual Ac-OGG1 level was linked to exercise-induced oxidative stress, as shown by changes in lipid peroxide levels and expression of Cu,Zn-SOD, Mn-SOD, and SIRT3, as well as the balance between acetyltransferase p300/CBP and deacetylase SIRT1, but not SIRT6 expression. Together these data suggest that that acetylated form of OGG1, and not OGG1 itself, correlates inversely with the 8-oxoG level in the DNA of human skeletal muscle, and the Ac-OGG1 level is dependent on adaptive cellular responses to physical activity, but is age independent.


Subject(s)
Age Factors , DNA Glycosylases/metabolism , Exercise , Guanine/analogs & derivatives , Muscle, Skeletal/physiology , Adult , Aged , Base Sequence , DNA Primers , Guanine/metabolism , Humans , Middle Aged , Muscle, Skeletal/enzymology , Reverse Transcriptase Polymerase Chain Reaction
12.
Med Sci Sports Exerc ; 42(10): 1809-18, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20216464

ABSTRACT

PURPOSE: Hemodialyzed patients demonstrate elevated oxidative stress and reduced functional status. Exercise induces health benefits, but acute exertion up-regulates oxidative stress responses in patients undergoing hemodialysis. Therefore, the aim of the present study was to examine the effect of L-carnitine supplementation on i) exercise performance and ii) blood redox status both at rest and after exercise. METHODS: Twelve hemodialysis patients received either L-carnitine (20 mg kg(-1) i.v.) or placebo in a double-blind, placebo-controlled, counterbalanced, and crossover design for 8 wk. Participants performed an exercise test to exhaustion before and after supplementation. During the test, V˙O2, respiratory quotient, heart rate, and time to exhaustion were monitored. Blood samples, collected before and after exercise, were analyzed for lactate, malondialdehyde, protein carbonyls, reduced and oxidized glutathione, antioxidant capacity, catalase, and glutathione peroxidase activity. RESULTS: Blood carnitine increased by L-carnitine supplementation proportionately at rest and after exercise. L-carnitine supplementation increased time to fatigue (22%) and decreased postexercise lactate (37%), submaximal heart rate, and respiratory quotient but did not affect V˙O2peak. L-carnitine supplementation increased reduced/oxidized glutathione (2.7-fold at rest, 4-fold postexercise) and glutathione peroxidase activity (4.5% at rest, 10% postexercise) and decreased malondialdehyde (19% at rest and postexercise) and protein carbonyl (27% at rest, 40% postexercise) concentration. CONCLUSIONS: Data suggest that a 2-month L-carnitine supplementation may be effective in attenuating oxidative stress responses, enhancing antioxidant status, and improving performance of patients with end-stage renal disease.


Subject(s)
Carnitine/administration & dosage , Dietary Supplements , Kidney Failure, Chronic/physiopathology , Oxidative Stress/drug effects , Renal Dialysis , Antioxidants , Catalase/blood , Exercise/physiology , Fatigue/drug therapy , Fatigue/physiopathology , Glutathione/blood , Glutathione Peroxidase/blood , Heart Rate/physiology , Humans , Lactic Acid/blood , Male , Malondialdehyde/blood , Middle Aged , Oxygen Consumption/physiology , Protein Carbonylation/drug effects , Vitamin B Complex/blood , Vitamin B Complex/pharmacology
13.
Nephron Clin Pract ; 109(2): c55-64, 2008.
Article in English | MEDLINE | ID: mdl-18560239

ABSTRACT

BACKGROUND/AIMS: Hemodialyzed patients (HD) demonstrate elevated oxidative stress (OXS) levels. Exercise effects on OXS response and antioxidant status of HD was investigated in the present study. METHODS: Twelve HD and 12 healthy controls (HC) performed a graded exercise protocol. Blood samples, collected prior to and following exercise, were analyzed for lactate, thiobarbituric acid-reactive substances (TBARS), protein carbonyls (PC), reduced (GSH) and oxidized glutathione (GSSG), total antioxidant capacity (TAC), catalase, and glutathione peroxidase (GPX) activity. RESULTS: HC demonstrated higher time-to-exhaustion (41%), lactate (41%) and VO2 peak (55%) levels. At rest, HD exhibited higher TBARS, PC, and catalase activity values and lower GSH, GSH/GSSG, TAC, and GPX levels. Although exercise elicited a marked change of OXS markers in both groups, these changes were more pronounced (p < 0.05) in HD patients. After adjusting for VO2 peak, differences between groups disappeared. VO2 peak was highly correlated with GSH/GSSG, TBARS, TAC and PC at rest and after exercise. CONCLUSIONS: These results imply that HD demonstrate higher OXS levels and a lower antioxidant status than HC at rest and following exercise. Acute exercise appears to exacerbate OXS response in hemodialyzed patients probably due to diminished antioxidant defense. However, aerobic capacity level seems to be related to OXS responses in this population.


Subject(s)
Exercise Test , Physical Endurance , Reactive Oxygen Species/blood , Renal Dialysis , Renal Insufficiency/physiopathology , Renal Insufficiency/rehabilitation , Adult , Female , Humans , Male , Middle Aged , Oxidative Stress , Renal Insufficiency/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...