Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Res ; 168: 76-82, 2021 Jul.
Article in English | MEDLINE | ID: mdl-31022413

ABSTRACT

Depression and anxiety, which are severe symptoms during menopause, are caused by ceased ovarian activity and declined serum progesterone levels. Studies have demonstrated that gut microbiota can regulate brain function and change the microbiota composition during the perimenopause period. This study investigated whether progesterone affects depressant and anxious behaviors via gut microbiota. In ovariectomized (OVX) mice, treatment with progesterone improved depressive and anxious behaviors, and gut microbiota composition was significantly changed. In particular, increased Lactobacillus spp. were observed in these mice. Reduction of microbiota by antibiotic treatment abolished the effect of progesterone on depression and anxiety. In addition, administration of Lactobacillus (L.) reuteri that was increased by progesterone also reduced the depressant behavior in OVX mice, and BDNF gene expression was elevated by progesterone treatment and L. reuteri administration in the hippocampus. Moreover, we found that progesterone stimulated the growth of L. reuteri in vitro. In summary, our findings indicate that progesterone reduces depression and anxiety through changes in gut microbiota composition, particularly by increasing the Lactobacillus spp. population.


Subject(s)
Gastrointestinal Microbiome , Animals , Anxiety , Depression , Female , Lactobacillus , Mice , Mice, Inbred C57BL , Progesterone
2.
Vet World ; 14(11): 2936-2940, 2021 Nov.
Article in English | MEDLINE | ID: mdl-35017841

ABSTRACT

BACKGROUND AND AIM: The selection and proper application of disinfectants are crucial to the prevention of many diseases, so disinfectants must be evaluated before being used for the prevention of African swine fever (ASF). Three disinfectant products belonging to the group of potassium hydrogen peroxymonosulfates, product A and product B, and a quaternary ammonium compound called product C, were examined in vitro for host cell cytotoxicity and the efficacy of ASF virus inactivation. The study parameters included various concentrations, exposure times, temperatures, and degrees of cytotoxicity. MATERIALS AND METHODS: Three disinfectant products were evaluated for cytotoxicity using primary porcine alveolar macrophage (PAM) cells at dilutions from 1:200 to 1:51,200. Disinfectants in concentrations of 1:200, 1:400, and 1:800 were prepared, the pH and the virucidal activity were tested. An equal volume of each dilution was mixed with the ASF virus and incubated at room temperature (20°C) or on ice (4°C) for 1 min, 5 min, or 30 min. Hemadsorption (HAD) or rosette formation was observed using an inverted microscope for 5 days after inoculation, and the virus titer was calculated as HAD50/mL. Each treatment and virus control were tested in triplicate, and the titers were reported as means and standard deviations. The reduction factor was used to measure inactivation. RESULTS: Products A, B, and C at 1:400, 1:800, and 1:25,600 of dilution, respectively, did not show significant cytotoxic effects on PAM cells. Products A and B could inactivate ASF virus at 1:200 dilution within 5 min after exposure at 4°C. However, at 20°C, the exposure time had to be extended to 30 min to inactivate the virus. Product C could inactivate the virus at 1:400 dilution within 5 min under both temperature conditions, whereas at 1:800 dilution, the exposure time had to be extended to 30 min to completely inactivate the virus at 20°C. CONCLUSION: All disinfectants could inactivate ASF virus in various concentrations, under appropriate exposure times and reaction temperatures, and there was no evidence of host cell cytotoxicity. For the control of ASF in pig farms, the appropriate concentration, ambient temperature, and contact time of these disinfectants should be taken into account.

3.
Biochem Biophys Res Commun ; 534: 871-876, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33162033

ABSTRACT

The polyadenylation element binding protein 1 (CPEB1) plays an important role in the regulation of poly(A) tail length at the 3'UTR of mRNA during transcription. Downregulation of CPEB1 expression, which is associated with the loss of mammary epithelial polarity, has been reported in breast cancer. CPEB1 downregulation leads to an increase in tumor aggressiveness of breast cancer. Breast cancer is also known to be responsive to the treatment with steroid hormones, which promotes cancer development and progression; however, the nature of these associations remains unclear. This study aimed to investigate whether estrogen and progesterone impacted CPEB1 expression in breast cancer in order to regulate cell proliferation and migration. MCF7 cell proliferation was increased in response to estrogen treatment, and estrogen application suppressed the expression of CPEB1 mRNA. Cells treated with estrogen or those depleted for CPEB1 by shRNA showed increased wound healing capacity compared with that of control cells in migration assay. Moreover, we found that CPEB1 level of expression in human breast cancer tissue was low compared with that in the healthy tissue. CPEB1 expression was downregulated in response to estrogen activity and in turn, that caused a significantly induced cell migration in breast cancer cells. This suggests that CPEB1 is one of the estrogen responsive genes, which stimulates breast cancer progression. Increasing and/or maintaining CPEB1 expression level has the potential to control breast cancer behavior.


Subject(s)
Breast Neoplasms/genetics , Estrogens/metabolism , Gene Expression Regulation, Neoplastic , Transcription Factors/genetics , mRNA Cleavage and Polyadenylation Factors/genetics , Adult , Aged , Aged, 80 and over , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Movement , Cell Proliferation , Down-Regulation , Female , Humans , MCF-7 Cells , Middle Aged , Transcription Factors/analysis , Transcription Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/analysis , mRNA Cleavage and Polyadenylation Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...