Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr ; 150(11): 2912-2923, 2020 11 19.
Article in English | MEDLINE | ID: mdl-32455433

ABSTRACT

BACKGROUND: Vitamin A (VA) deficiency is a public health problem in some countries. Fortification, supplementation, and increased provitamin A consumption through biofortification are efficacious, but monitoring is needed due to risk of excessive VA intake when interventions overlap. OBJECTIVES: Two studies in 28-36-d-old male Mongolian gerbils simulated exposure to multiple VA interventions to determine the effects of provitamin A carotenoid consumption from biofortified maize and carrots and preformed VA fortificant on status. METHODS: Study 1 was a 2 × 2 × 2 factorial design (n = 85) with high-ß-carotene maize, orange carrots, and VA fortification at 50% estimated gerbil needs, compared with white maize and white carrot controls. Study 2 was a 2 × 3 factorial design (n = 66) evaluating orange carrot and VA consumption through fortification at 100% and 200% estimated needs. Both studies utilized 2-wk VA depletion, baseline evaluation, 9-wk treatments, and liver VA stores by HPLC. Intestinal scavenger receptor class B member 1 (Scarb1), ß-carotene 15,15'-dioxygenase (Bco1), ß-carotene 9',10'-oxygenase (Bco2), intestine-specific homeobox (Isx), and cytochrome P450 26A1 isoform α1 (Cyp26a1) expression was analyzed by qRT-PCR in study 2. RESULTS: In study 1, liver VA concentrations were significantly higher in orange carrot (0.69 ± 0.12 µmol/g) and orange maize groups (0.52 ± 0.21 µmol/g) compared with baseline (0.23 ± 0.069 µmol/g) and controls. Liver VA concentrations from VA fortificant alone (0.11 ± 0.053 µmol/g) did not differ from negative control. In study 2, orange carrot significantly enhanced liver VA concentrations (0.85 ± 0.24 µmol/g) relative to baseline (0.43 ± 0.14 µmol/g), but VA fortificant alone (0.42 ± 0.21 µmol/g) did not. Intestinal Scarb1 and Bco1 were negatively correlated with increasing liver VA concentrations (P < 0.01, r2 = 0.25-0.27). Serum retinol concentrations did not differ. CONCLUSIONS: Biofortified carrots and maize without fortification prevented VA deficiency in gerbils. During adequate provitamin A dietary intake, preformed VA intake resulted in excessive liver stores in gerbils, despite downregulation of carotenoid absorption and cleavage gene expression.


Subject(s)
Carotenoids/administration & dosage , Carotenoids/pharmacokinetics , Liver/chemistry , Vitamin A/administration & dosage , Vitamin A/pharmacokinetics , Animal Feed , Animals , Biofortification , Carotenoids/adverse effects , Carotenoids/metabolism , Daucus carota , Dose-Response Relationship, Drug , Drug Interactions , Gerbillinae , Liver/metabolism , Male , Vitamin A/adverse effects , Zea mays
2.
Curr Dev Nutr ; 3(2): nzy096, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30793096

ABSTRACT

BACKGROUND: Liver vitamin A (VA) concentration is the gold standard for VA status, but is not routinely accessible. Adipose tissue VA concentrations, as retinol and retinyl esters, may be correlated to liver VA. α-VA (as α-retinol) is a cleavage product of α-carotene that traces postprandial VA distribution to tissues but cannot recirculate from hepatic stores, providing insight into tissue VA sources. OBJECTIVE: We performed a secondary analysis of VA and α-VA in Mongolian gerbil liver and adipose to determine the suitability of adipose tissue VA as a biomarker of VA status. METHODS: Gerbils (n = 186) consumed feeds containing 0-15.9 µg (0-55.6 nmol) retinol activity equivalents/g as preformed VA and/or provitamin A carotenoids for 36-62 d in 3 studies. Body fat percentage was determined in the final study by MRI. Serum and liver retinol, α-retinol, and retinyl esters were extracted and analyzed by HPLC or ultra-performance LC (UPLC). Epididymal and retroperitoneal adipose tissue retinol and α-retinol were determined by UPLC after homogenization, saponification, and extraction. Linear regression models with appropriate data transformations identified determinants of adipose VA concentrations. RESULTS: Liver VA did not predict serum retinol concentrations. After logarithmic transformation of adipose and liver values, liver VA positively predicted both adipose depots' VA concentrations (P < 0.001, R 2 > 0.7). Adding serum retinol or body fat percentage did not significantly increase the adjusted R 2. In liver, α-VA concentration explained much of the variation of VA (P < 0.001, R 2 > 0.7), but far less in epididymal and retroperitoneal adipose (P = 0.004 and 0.012, respectively, R 2 < 0.4). CONCLUSIONS: Adipose VA is correlated with liver VA and is a potential biomarker of VA status. It is not fully explained by chylomicron deposition and is negatively affected by serum retinol. Adipose biopsy validation is needed for human applications.

3.
Am J Clin Nutr ; 108(4): 793-802, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30321275

ABSTRACT

Background: Biofortification of staple crops with ß-carotene is a strategy to reduce vitamin A deficiency, and several varieties are available in some African countries. ß-Cryptoxanthin (BCX)-enhanced maize is currently in field trials. To our knowledge, maize BCX bioavailability has not been assessed in humans. Serum retinol 13C content and xanthophyll concentrations are proposed effectiveness biomarkers for biofortified maize adoption. Objective: We determined the relative difference in BCX and zeaxanthin bioavailability from whole-grain and refined BCX-biofortified maize during chronic feeding compared with white maize and evaluated short-term changes in 13C-abundance in serum retinol. Design: After a 7-d washout, 9 adults (mean ± SD age: 23.4 ± 2.3 y; 5 men) were provided with muffins made from BCX-enhanced whole-grain orange maize (WGOM), refined orange maize (ROM), or refined white maize (RWM) for 12 d in a randomized, blinded, crossover study followed by a 7-d washout. Blood was drawn on days 0, 3, 6, 9, 12, 15, and 19. Carotenoid areas under the curve (AUCs) were compared by using a fixed-effects model. 13C-Abundance in serum retinol was determined by using gas chromatography/combustion/isotope-ratio mass spectrometry on days 0, 12, and 19. Vitamin A status was determined by 13C-retinol isotope dilution postintervention. Results: The serum BCX AUC was significantly higher for WGOM (1.70 ± 0.63 µmol ⋅ L-1 ⋅ d) and ROM (1.66 ± 1.08 µmol ⋅ L-1 ⋅ d) than for RWM (-0.06 ± 0.13 µmol ⋅ L-1 ⋅ d; P < 0.003). A greater increase occurred in serum BCX from WGOM muffins (131%) than from ROM muffins (108%) (P ≤ 0.003). Zeaxanthin AUCs were higher for WGOM (0.94 ± 0.33) and ROM (0.96 ± 0.47) than for RWM (0.05 ± 0.12 µmol ⋅ L-1 ⋅ d; P < 0.003). The intervention did not affect predose serum retinol 13C-abundance. Vitamin A status was within an optimal range (defined as 0.1-0.7 µmol/g liver). Conclusions: BCX and zeaxanthin were highly bioavailable from BCX-biofortified maize. The adoption of BCX maize could positively affect consumers' BCX and zeaxanthin intakes and associated health benefits. This trial is registered at www.clinicaltrials.gov as NCT02800408.


Subject(s)
Beta-Cryptoxanthin/pharmacokinetics , Diet , Food, Fortified , Vitamin A Deficiency/prevention & control , Whole Grains/chemistry , Zea mays/chemistry , Zeaxanthins/pharmacokinetics , Adult , Africa , Beta-Cryptoxanthin/blood , Biological Availability , Biomarkers/blood , Bread , Carbon Isotopes , Cross-Over Studies , Feeding Behavior , Female , Humans , Liver/metabolism , Male , Nutritional Status , Provitamins/blood , Provitamins/pharmacokinetics , Vitamin A/blood , Vitamin A Deficiency/blood , Vitamin A Deficiency/metabolism , Young Adult , Zeaxanthins/blood , beta Carotene/blood , beta Carotene/pharmacokinetics
4.
ACS Omega ; 2(10): 7320-7328, 2017 Oct 31.
Article in English | MEDLINE | ID: mdl-31457305

ABSTRACT

Biofortification of crops to enhance provitamin A carotenoids is a strategy to increase the intake where vitamin A deficiency presents a widespread problem. Heat, light, and oxygen cause isomerization and oxidation of carotenoids, reducing provitamin A activity. Understanding provitamin A retention is important for assessing efficacy of biofortified foods. Retention of carotenoids in high-xanthophyll and high-ß-carotene maize was assessed after a long-term storage at three temperatures. Carotenoid retention in high-ß-cryptoxanthin maize was determined in muffins, non-nixtamalized tortillas, porridge, and fried puffs made from whole-grain and sifted flour. Retention in eggs from hens fed high-ß-cryptoxanthin maize was assessed after frying, scrambling, boiling, and microwaving. Loss during storage in maize was accelerated with increasing temperature and affected by genotype. Boiling whole-grain maize into porridge resulted in the highest retention of all cooking and sifting methods (112%). Deep-fried maize and scrambled eggs had the lowest carotenoid retention rates of 67-78 and 84-86%, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...