Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 5319, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35351944

ABSTRACT

Due to market and legislative expectations, there is a constant need to explore new potential antimicrobial agents for functional perfumery. In this study, we evaluated the antimicrobial activity of 53 low molecular oximes and the corresponding carbonyl compounds against Escherichia coli, Enterococcus hirae, Pseudomonas aeruginosa, Bacillus cereus, Staphylococcus aureus, Aspergillus brasiliensis, Legionella pneumophila and Candida albicans. The most potent compound was α-isomethylionone oxime, which exhibited a minimum inhibitory concentration (MIC) of 18.75 µg/mL against E. hirae. The evaluation of the MICs for bacterial and fungal strains was performed for selected compounds, for example, the MIC of 2-phenylpropionaldehyde, cis-jasmone oxime, and trans-cinnamaldehyde measured against A. brasiliensis was 37.50 µg/mL. ADME-Tox (Absorption, Distribution, Metabolism, Excretion, and Toxicity) and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cell viability assays were performed to assess the cytotoxicity of tested compounds. ADME-Tox indicated the safety and promising properties of selected compounds, which enables their usage as nontoxic supporting antibacterial agents. The results of the in vitro MTS assay were consistent with the ADME-Tox results. None of the compounds tested was toxic to Human Embryonic Kidney 293T (HEK293T) cells, with all cell viabilities exceeding 85%.


Subject(s)
Anti-Infective Agents , Oils, Volatile , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Candida albicans , HEK293 Cells , Humans , Oils, Volatile/pharmacology , Oximes/pharmacology , Plant Extracts
SELECTION OF CITATIONS
SEARCH DETAIL
...