Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(48): 30370-30379, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33199607

ABSTRACT

Nibbler (Nbr) is a 3'-to-5' exoribonuclease whose catalytic 3'-end trimming activity impacts microRNA (miRNA) and PIWI-interacting RNA (piRNA) biogenesis. Here, we report on structural and functional studies to decipher the contributions of Nbr's N-terminal domain (NTD) and exonucleolytic domain (EXO) in miRNA 3'-end trimming. We have solved the crystal structures of the NTD core and EXO domains of Nbr, both in the apo-state. The NTD-core domain of Aedes aegypti Nbr adopts a HEAT-like repeat scaffold with basic patches constituting an RNA-binding surface exhibiting a preference for binding double-strand RNA (dsRNA) over single-strand RNA (ssRNA). Structure-guided functional assays in Drosophila S2 cells confirmed a principal role of the NTD in exonucleolytic miRNA trimming, which depends on basic surface patches. Gain-of-function experiments revealed a potential role of the NTD in recruiting Nbr to Argonaute-bound small RNA substrates. The EXO domain of A. aegypti and Drosophila melanogaster Nbr adopt a mixed α/ß-scaffold with a deep pocket lined by a DEDDy catalytic cleavage motif. We demonstrate that Nbr's EXO domain exhibits Mn2+-dependent ssRNA-specific 3'-to-5' exoribonuclease activity. Modeling of a 3' terminal Uridine into the catalytic pocket of Nbr EXO indicates that 2'-O-methylation of the 3'-U would result in a steric clash with a tryptophan side chain, suggesting that 2'-O-methylation protects small RNAs from Nbr-mediated trimming. Overall, our data establish that Nbr requires its NTD as a substrate recruitment platform to execute exonucleolytic miRNA maturation, catalyzed by the ribonuclease EXO domain.


Subject(s)
3' Flanking Region , Drosophila Proteins/chemistry , Exoribonucleases/chemistry , MicroRNAs/chemistry , MicroRNAs/genetics , RNA Processing, Post-Transcriptional , Structure-Activity Relationship , Animals , Argonaute Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster , Exoribonucleases/metabolism , MicroRNAs/metabolism , Models, Biological , Models, Molecular , Molecular Conformation , Mutation , Protein Binding , Protein Interaction Domains and Motifs , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism
2.
Mol Cell ; 75(4): 756-768.e7, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31350118

ABSTRACT

Argonaute-bound microRNAs silence mRNA expression in a dynamic and regulated manner to control organismal development, physiology, and disease. We employed metabolic small RNA sequencing for a comprehensive view on intracellular microRNA kinetics in Drosophila. Based on absolute rate of biogenesis and decay, microRNAs rank among the fastest produced and longest-lived cellular transcripts, disposing up to 105 copies per cell at steady-state. Mature microRNAs are produced within minutes, revealing tight intracellular coupling of biogenesis that is selectively disrupted by pre-miRNA-uridylation. Control over Argonaute protein homeostasis generates a kinetic bottleneck that cooperates with non-coding RNA surveillance to ensure faithful microRNA loading. Finally, regulated small RNA decay enables the selective rapid turnover of Ago1-bound microRNAs, but not of Ago2-bound small interfering RNAs (siRNAs), reflecting key differences in the robustness of small RNA silencing pathways. Time-resolved small RNA sequencing opens new experimental avenues to deconvolute the timescales, molecular features, and regulation of small RNA silencing pathways in living cells.


Subject(s)
Argonaute Proteins/metabolism , Drosophila Proteins/metabolism , Homeostasis/physiology , MicroRNAs/metabolism , Sequence Analysis, RNA , Animals , Argonaute Proteins/genetics , Cell Line , Drosophila Proteins/genetics , Drosophila melanogaster , MicroRNAs/genetics
3.
Nat Methods ; 15(4): 283-289, 2018 04.
Article in English | MEDLINE | ID: mdl-29481550

ABSTRACT

MicroRNAs (miRNAs) play an essential role in the post-transcriptional regulation of animal development and physiology. However, in vivo studies aimed at linking miRNA function to the biology of distinct cell types within complex tissues remain challenging, partly because in vivo miRNA-profiling methods lack cellular resolution. We report microRNome by methylation-dependent sequencing (mime-seq), an in vivo enzymatic small-RNA-tagging approach that enables high-throughput sequencing of tissue- and cell-type-specific miRNAs in animals. The method combines cell-type-specific 3'-terminal 2'-O-methylation of animal miRNAs by a genetically encoded, plant-specific methyltransferase (HEN1), with chemoselective small-RNA cloning and high-throughput sequencing. We show that mime-seq uncovers the miRNomes of specific cells within Caenorhabditis elegans and Drosophila at unprecedented specificity and sensitivity, enabling miRNA profiling with single-cell resolution in whole animals. Mime-seq overcomes current challenges in cell-type-specific small-RNA profiling and provides novel entry points for understanding the function of miRNAs in spatially restricted physiological settings.


Subject(s)
Caenorhabditis elegans/genetics , Drosophila/genetics , MicroRNAs/genetics , Sequence Analysis, RNA/methods , Animals , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cloning, Molecular , Neurons/metabolism
4.
Mol Cell ; 59(2): 203-16, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26145176

ABSTRACT

Uridylation of RNA species represents an emerging theme in post-transcriptional gene regulation. In the microRNA pathway, such modifications regulate small RNA biogenesis and stability in plants, worms, and mammals. Here, we report Tailor, an uridylyltransferase that is required for the majority of 3' end modifications of microRNAs in Drosophila and predominantly targets precursor hairpins. Uridylation modulates the characteristic two-nucleotide 3' overhang of microRNA hairpins, which regulates processing by Dicer-1 and destabilizes RNA hairpins. Tailor preferentially uridylates mirtron hairpins, thereby impeding the production of non-canonical microRNAs. Mirtron selectivity is explained by primary sequence specificity of Tailor, selecting substrates ending with a 3' guanosine. In contrast to mirtrons, conserved Drosophila precursor microRNAs are significantly depleted in 3' guanosine, thereby escaping regulatory uridylation. Our data support the hypothesis that evolutionary adaptation to Tailor-directed uridylation shapes the nucleotide composition of precursor microRNA 3' ends. Hence, hairpin uridylation may serve as a barrier for the de novo creation of microRNAs in Drosophila.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , MicroRNAs/chemistry , MicroRNAs/metabolism , RNA Nucleotidyltransferases/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Female , Fertility/genetics , Fertility/physiology , Gene Knockdown Techniques , Genes, Insect , Male , MicroRNAs/genetics , Molecular Sequence Data , Mutation , Nucleic Acid Conformation , RNA Nucleotidyltransferases/antagonists & inhibitors , RNA Nucleotidyltransferases/genetics , RNA Processing, Post-Transcriptional , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...