Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 16 Suppl 18: S8, 2015.
Article in English | MEDLINE | ID: mdl-26679043

ABSTRACT

BACKGROUND: Protein-protein interaction (PPI) is essential for molecular functions in biological cells. Investigation on protein interfaces of known complexes is an important step towards deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective to binding. Therefore, we have estimated the relative difference in percentage of polar residues between surface and the interface for each complex in a non-redundant heterodimer dataset of 278 complexes to understand the predominant forces driving binding. RESULTS: Our analysis showed ~60% of protein complexes with surface polarity greater than interface polarity (designated as class A). However, a considerable number of complexes (~40%) have interface polarity greater than surface polarity, (designated as class B), with a significantly different p-value of 1.66E-45 from class A. Comprehensive analyses of protein complexes show that interface features such as interface area, interface polarity abundance, solvation free energy gain upon interface formation, binding energy and the percentage of interface charged residue abundance distinguish among class A and class B complexes, while electrostatic visualization maps also help differentiate interface classes among complexes. CONCLUSIONS: Class A complexes are classical with abundant non-polar interactions at the interface; however class B complexes have abundant polar interactions at the interface, similar to protein surface characteristics. Five physicochemical interface features analyzed from the protein heterodimer dataset are discriminatory among the interface residue-level classes. These novel observations find application in developing residue-level models for protein-protein binding prediction, protein-protein docking studies and interface inhibitor design as drugs.


Subject(s)
Proteins/chemistry , Databases, Protein , Dimerization , Hydrogen Bonding , Internet , Protein Interaction Maps , Protein Structure, Tertiary , Proteins/classification , Proteins/metabolism , Static Electricity , User-Computer Interface
2.
Protein Sci ; 24(9): 1486-94, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26131659

ABSTRACT

Protein-protein interaction (PPI) establishes the central basis for complex cellular networks in a biological cell. Association of proteins with other proteins occurs at varying affinities, yet with a high degree of specificity. PPIs lead to diverse functionality such as catalysis, regulation, signaling, immunity, and inhibition, playing a crucial role in functional genomics. The molecular principle of such interactions is often elusive in nature. Therefore, a comprehensive analysis of known protein complexes from the Protein Data Bank (PDB) is essential for the characterization of structural interface features to determine structure-function relationship. Thus, we analyzed a nonredundant dataset of 278 heterodimer protein complexes, categorized into major functional classes, for distinguishing features. Interestingly, our analysis has identified five key features (interface area, interface polar residue abundance, hydrogen bonds, solvation free energy gain from interface formation, and binding energy) that are discriminatory among the functional classes using Kruskal-Wallis rank sum test. Significant correlations between these PPI interface features amongst functional categories are also documented. Salt bridges correlate with interface area in regulator-inhibitors (r = 0.75). These representative features have implications for the prediction of potential function of novel protein complexes. The results provide molecular insights for better understanding of PPIs and their relation to biological functions.


Subject(s)
Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Interaction Mapping/methods , Computational Biology/methods , Databases, Protein , Dimerization , Humans , Protein Conformation , Protein Interaction Maps/physiology , Structure-Activity Relationship
3.
J Proteome Res ; 13(12): 5956-64, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25318615

ABSTRACT

Urokinase plasminogen activator receptor (uPAR) and the epithelial integrin αvß6 are thought to individually play critical roles in cancer metastasis. These observations have been highlighted by the recent discovery (by proteomics) of an interaction between these two molecules, which are also both implicated in the epithelial-mesenchymal transition (EMT) that facilitates escape of cells from tissue barriers and is a common signature of cancer metastases. In this study, orthogonal in cellulo and in vitro functional proteomic approaches were used to better characterize the uPAR·αvß6 interaction. Proximity ligation assays (PLA) confirmed the uPAR·αvß6 interaction on OVCA429 (ovarian cancer line) and four different colon cancer cell lines including positive controls in cells with de novo ß6 subunit expression. PLA studies were then validated using peptide arrays, which also identified potential physical sites of uPAR interaction with αvß6, as well as verifying interactions with other known uPAR ligands (e.g., uPA, vitronectin) and individual integrin subunits (i.e., αv, ß1, ß3, and ß6 alone). Our data suggest that interaction with uPAR requires expression of the complete αß heterodimer (e.g., αvß6), not individual subunits (i.e., αv, ß1, ß3, or ß6). Finally, using in silico structural analyses in concert with these functional proteomics studies, we propose and demonstrate that the most likely unique sites of interaction between αvß6 and uPAR are located in uPAR domains II and III.


Subject(s)
Antigens, Neoplasm/metabolism , Integrins/metabolism , Receptors, Urokinase Plasminogen Activator/metabolism , Amino Acid Sequence , Antigens, Neoplasm/chemistry , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Humans , Integrins/chemistry , Molecular Sequence Data , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Proteomics , Receptors, Urokinase Plasminogen Activator/chemistry
4.
J Struct Biol ; 185(3): 327-35, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24423664

ABSTRACT

Integrin αvß6 is an epithelially-restricted heterodimeric transmembrane glycoprotein, known to interact with the urokinase plasminogen activating receptor (uPAR), playing a critical role in cancer progression. While the X-ray crystallographic structures of segments of other integrin heterodimers are known, there is no structural information for the complete αvß6 integrin to assess its direct interaction with uPAR. We have performed structural analysis of αvß6·uPAR interactions using model data with docking simulations to pinpoint their interface, in accord with earlier reports of the ß-propeller region of integrin α-chain interacting with uPAR. Interaction of αvß6·uPAR was demonstrated by our previous study using immunoprecipitation coupled with proteomic analysis by mass spectrometry. Recently this interaction was validated with proximity ligation assays and peptide arrays. The data suggested that two potential peptide regions from domain II and one peptide region from domain III of uPAR, interact with αvß6 integrin. Only the peptide region from domain III is consistent with the three-dimensional interaction site proposed in this study. The molecular basis of integrin αvß6·uPAR binding using structural data is discussed for its implications as a potential therapeutic target in cancer management.


Subject(s)
Antigens, Neoplasm/metabolism , Integrins/metabolism , Receptors, Urokinase Plasminogen Activator/metabolism , Antigens, Neoplasm/chemistry , Humans , Integrins/chemistry , Protein Binding , Protein Structure, Tertiary , Proteomics , Receptors, Urokinase Plasminogen Activator/chemistry
5.
Protein Pept Lett ; 21(8): 779-89, 2014.
Article in English | MEDLINE | ID: mdl-23855658

ABSTRACT

Molecular function in cellular processes is governed by protein-protein interactions (PPIs) within biological networks. Selective yet specific association of these protein partners contributes to diverse functionality such as catalysis, regulation, assembly, immunity, and inhibition in a cell. Therefore, understanding the principles of protein-protein association has been of immense interest for several decades. We provide an overview of the experimental methods used to determine PPIs and the key databases archiving this information. Structural and functional information of existing protein complexes confers knowledge on the principles of PPI, based on which a classification scheme for PPIs is then introduced. Obtaining high-quality non-redundant datasets of protein complexes for interaction characterisation is an essential step towards deciphering their underlying binding principles. Analysis of physicochemical features and their documentation has enhanced our understanding of the molecular basis of protein-protein association. We describe the diverse datasets created/collected by various groups and their key findings inferring distinguishing features. The currently available interface databases and prediction servers have also been compiled.


Subject(s)
Computational Biology/methods , Protein Interaction Mapping/methods , Databases, Protein , Humans
6.
Bioinformation ; 6(2): 48-56, 2011 Mar 22.
Article in English | MEDLINE | ID: mdl-21544164

ABSTRACT

UNLABELLED: The human immunodeficiency virus type-1 (HIV-1) gp160 (gp120-gp41 complex) trimer envelope (ENV) protein is a potential vaccine candidate for HIV/AIDS. HIV-1 vaccine development has been problematic and charge polarity as well as sequence variation across clades may relate to the difficulties. Further obstacles are caused by sequence variation between blood and brain-derived sequences, since the brain is a separate compartment for HIV-1 infection. We utilize a threedimensional residue measure of solvent exposure, accessible surface area (ASA), which shows that major segments of gp120 and gp41 known structures are solvent exposed across clades. We demonstrate a large percent sequence polarity for solvent exposed residues in gp120 and gp41. The range of sequence polarity varies across clades, blood, and brain from different geographical locations. Regression analysis shows that blood and brain gp120 and gp41 percent sequence polarity range correlate with mean Shannon entropy. These results point to the use of protein modifications to enhance HIV-1 ENV vaccines across multiple clades, blood, and brain. It should be noted that we do not address the issue of protein glycosylation here; however, this is an important issue for vaccine design and development. ABBREVIATIONS: HIV-1 - human immunodeficiency virus type 1, AIDS - acquired immunodeficiency syndrome, ENV - envelope, gp160 - 160,000d glycoprotein, gp120 - 120,000d glycoprotein, gp41 - 41,000d glycoprotein, LANL - Los Alamos National Laboratories, PDB - Protein Data Bank, HVTN - STEP HIV vaccine trial, AA - amino acids, MSA - multiple sequence alignment, ASA - accessible surface area, SNPs- single nucleotide polymorphisms, HAART - Highly Active Antiretroviral Therapy, CCR5 - C-C chemokine receptor type 5, CNS - central nervous system, HIVE - HIV encephalitis, P - polarity, NP - non-polarity, CTL - cytotoxic T lymphocyte, NIAID - National Institute of Allergy and Infectious Diseases.

7.
Bioinformation ; 6(4): 137-43, 2011 May 07.
Article in English | MEDLINE | ID: mdl-21572879

ABSTRACT

Protein heterodimer complexes are often involved in catalysis, regulation, assembly, immunity and inhibition. This involves the formation of stable interfaces between the interacting partners. Hence, it is of interest to describe heterodimer interfaces using known structural complexes. We use a non-redundant dataset of 192 heterodimer complex structures from the protein databank (PDB) to identify interface residues and describe their interfaces using amino-acids residue property preference. Analysis of the dataset shows that the heterodimer interfaces are often abundant in polar residues. The analysis also shows the presence of two classes of interfaces in heterodimer complexes. The first class of interfaces (class A) with more polar residues than core but less than surface is known. These interfaces are more hydrophobic than surfaces, where protein-protein binding is largely hydrophobic. The second class of interfaces (class B) with more polar residues than core and surface is shown. These interfaces are more polar than surfaces, where binding is mainly polar. Thus, these findings provide insights to the understanding of protein-protein interactions.

8.
Bioinformation ; 4(7): 310-9, 2010 Jan 20.
Article in English | MEDLINE | ID: mdl-20978604

ABSTRACT

Hetero dimer (different monomers) interfaces are involved in catalysis and regulation through the formation of interface active sites. This is critical in cell and molecular biology events. The physical and chemical factors determining the formation of the interface active sites is often large in numbers. The combined role of interacting features is frequently combinatorial and additive in nature. Therefore, it is important to determine the physical and chemical features of such interactions. A number of such features have been documented in literature since 1975. However, the use of such interaction features in the prediction of interaction partners and sites given their sequences is still a challenge. In a non-redundant dataset of 156 hetero-dimer structures determined by X-ray crystallography, the interacting partners are often varying in size and thus, size variation between subunits is an important factor in determining the mode of interface formation. The size of protein subunits interacting are either small-small, largelarge, medium-medium, large-small, large-medium and small-medium. It should also be noted that the interface formed between subunits have physical interactions at N terminal (N), C terminal (C) and middle (M) region of the protein with reference to their sequences in one dimension. These features are believed to have application in the prediction of interaction partners and sites from sequences. However, the use of such features for interaction prediction from sequence is not currently clear.

SELECTION OF CITATIONS
SEARCH DETAIL
...