Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Med Sci Sports Exerc ; 56(2): 221-229, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38214538

ABSTRACT

PURPOSE: Growing concern exists worldwide about stress-related mental disorders, such as posttraumatic stress disorder (PTSD), often linked to hippocampal dysfunctions. Recognizing this connection, regular light-intensity exercise (LIE)-such as yoga, walking, or slow jogging-may offer a solution. Easily accessible even to vulnerable individuals, LIE has been found to enhance hippocampus-based cognitive functions through the stimulation of neurotrophic factors like brain-derived neurotrophic factor (BDNF). A prior study that demonstrated BDNF's role in extinguishing original fear memory further leads us to propose that a consistent LIE training might drive fear extinction learning, offering potential therapeutic benefits through BDNF signaling. METHODS: Eleven-week-old Wistar rats underwent 4 wk of training under conditions of sedentary, LIE, or moderate-intensity exercise (MOE) after contextual or auditory fear conditioning. Subsequently, fear extinction tests were performed. We then administered intraperitoneal (i.p.) ANA-12, a selective antagonist of tropomyosin receptor kinase B (TrkB), or a vehicle to explore the role of BDNF signaling in exercise-induced fear extinction among the LIE rats. Following the regular exercise training, further fear extinction tests were conducted, and hippocampal protein analysis was performed using Western blotting. RESULTS: Both LIE and MOE over 4 wk accelerated hippocampus-associated contextual fear extinction compared with sedentary. In addition, 4 wk of LIE with i.p. administered vehicle increased hippocampal BDNF and TrkB protein levels. In contrast, i.p. ANA-12 administration fully blocked the LIE-enhanced protein levels and its effect on contextual fear extinction. CONCLUSIONS: Our findings reveal that LIE regimen promotes fear extinction learning, at least partially tied to hippocampal BDNF-TrkB signaling. This suggests that even regular light exercise could alleviate the excessive fear response in anxiety disorders and PTSD, providing hope for those affected.


Subject(s)
Brain-Derived Neurotrophic Factor , Extinction, Psychological , Fear , Physical Conditioning, Animal , Animals , Rats , Brain-Derived Neurotrophic Factor/metabolism , Extinction, Psychological/physiology , Fear/physiology , Hippocampus/metabolism , Rats, Wistar
2.
Nihon Yakurigaku Zasshi ; 157(6): 440-442, 2022.
Article in Japanese | MEDLINE | ID: mdl-36328557

ABSTRACT

Central nucleus of the amygdala (CeA) has been known as an output region of emotional processing, such as fear emotion. However, recent development of technology allows us to dissect CeA neurons to find the additional role of CeA in feeding behavior, anxiety behavior and pain regulation. On the other hand, neuropeptide B/W receptor 1 expressing neurons (NPBWR1 neurons) have been known to localize in the CeA, but their physiological role is still unclear. In this review, I will introduce the recent findings about the variety of neurons in the CeA and explain the role of NPBWR1 neurons in the regulation of social behavior.


Subject(s)
Central Amygdaloid Nucleus , Central Amygdaloid Nucleus/physiology , Neurons/physiology , Anxiety , Fear , Emotions
3.
J Neurosci ; 41(7): 1582-1596, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33372061

ABSTRACT

During rapid eye movement (REM) sleep, anti-gravity muscle tone and bodily movements are mostly absent, because somatic motoneurons are inhibited by descending inhibitory pathways. Recent studies showed that glycine/GABA neurons in the ventromedial medulla (VMM; GlyVMM neurons) play an important role in generating muscle atonia during REM sleep (REM-atonia). However, how these REM-atonia-inducing neurons interconnect with other neuronal populations has been unknown. In the present study, we first identified a specific subpopulation of GlyVMM neurons that play an important role in induction of REM-atonia by virus vector-mediated tracing in male mice in which glycinergic neurons expressed Cre recombinase. We found these neurons receive direct synaptic input from neurons in several brain stem regions, including glutamatergic neurons in the sublaterodorsal tegmental nucleus (SLD; GluSLD neurons). Silencing this circuit by specifically expressing tetanus toxin light chain (TeTNLC) resulted in REM sleep without atonia. This manipulation also caused a marked decrease in time spent in cataplexy-like episodes (CLEs) when applied to narcoleptic orexin-ataxin-3 mice. We also showed that GlyVMM neurons play an important role in maintenance of sleep. This present study identified a population of glycinergic neurons in the VMM that are commonly involved in REM-atonia and cataplexy.SIGNIFICANCE STATEMENT We identified a population of glycinergic neurons in the ventral medulla that plays an important role in inducing muscle atonia during rapid eye movement (REM) sleep. It sends axonal projections almost exclusively to motoneurons in the spinal cord and brain stem except to those that innervate extraocular muscles, while other glycinergic neurons in the same region also send projections to other regions including monoaminergic nuclei. Furthermore, these neurons receive direct inputs from several brainstem regions including glutamatergic neurons in the sublaterodorsal tegmental nucleus (SLD). Genetic silencing of this pathway resulted in REM sleep without atonia and a decrease of cataplexy when applied to narcoleptic mice. This work identified a neural population involved in generating muscle atonia during REM sleep and cataplexy.


Subject(s)
Cataplexy/physiopathology , Glycine/physiology , Medulla Oblongata/physiology , Muscle, Skeletal/physiology , Neurons/physiology , Sleep, REM/physiology , Animals , Ataxin-3/genetics , Axons/physiology , Cataplexy/genetics , Electroencephalography , Male , Medulla Oblongata/physiopathology , Mice , Mice, Inbred C57BL , Muscle Tonus/physiology , Muscle, Skeletal/physiopathology , Narcolepsy/genetics , Narcolepsy/physiopathology , Orexins/genetics , Tetanus Toxin/pharmacology
4.
Front Neurosci ; 14: 691, 2020.
Article in English | MEDLINE | ID: mdl-32754010

ABSTRACT

Orexins are hypothalamic neuropeptides that were initially identified in the rat brain as endogenous ligands for an (previously) orphan G-protein-coupled receptor (GPCR). They are multitasking peptides involved in many physiological functions, including regulation of feeding behavior, wakefulness and autonomic/neuroendocrine functions, and sleep/wakefulness states in mammals. There are two isopeptides of orexin, orexin A and orexin B, which are produced from a common precursor peptide, prepro-orexin. Structures of orexins, as well as orexin genes, are highly conserved throughout mammalian species, suggesting strong evolutionary pressure that maintains the structures. Their lengths and structure suggested that orexin B is the ancestral form of the orexin neuropeptide. In mammals, orexins bind to two subtypes of GPCRs, i.e., orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R). Phylogenetically, the orexin system is present exclusively in vertebrates. In genomes of species outside mammals, there is only one orexin receptor, which is similar to OX2R, suggesting that OX2R is the prototype receptor for orexins. OX1R is likely to have evolved during early mammalian evolution. Orexin-producing neurons (orexin neurons) are mainly located in the lateral hypothalamic area (LHA) in mammals and are also found in hypothalamic regions in many other vertebrates. Orexins are likely to be closely related to the regulation of active, motivated behavior in many species. The orexin system seems to have evolved as a system that supports active and purposeful behavior which is closely related with wakefulness.

5.
Nature ; 583(7814): 109-114, 2020 07.
Article in English | MEDLINE | ID: mdl-32528181

ABSTRACT

Hibernating mammals actively lower their body temperature to reduce energy expenditure when facing food scarcity1. This ability to induce a hypometabolic state has evoked great interest owing to its potential medical benefits2,3. Here we show that a hypothalamic neuronal circuit in rodents induces a long-lasting hypothermic and hypometabolic state similar to hibernation. In this state, although body temperature and levels of oxygen consumption are kept very low, the ability to regulate metabolism still remains functional, as in hibernation4. There was no obvious damage to tissues and organs or abnormalities in behaviour after recovery from this state. Our findings could enable the development of a method to induce a hibernation-like state, which would have potential applications in non-hibernating mammalian species including humans.


Subject(s)
Energy Metabolism/physiology , Hibernation/physiology , Hypothalamus/cytology , Hypothalamus/physiology , Neural Pathways/cytology , Neural Pathways/physiology , Animals , Basal Metabolism/physiology , Dorsomedial Hypothalamic Nucleus/cytology , Dorsomedial Hypothalamic Nucleus/physiology , Female , GABAergic Neurons/metabolism , Glutamine/metabolism , Male , Mice , Oxygen Consumption/physiology
6.
Brain Res ; 1731: 146037, 2020 03 15.
Article in English | MEDLINE | ID: mdl-30481504

ABSTRACT

Fear is an important physiological function for survival. It appears when animals or humans are confronted with an environmental threat. The amygdala has been shown to play a highly important role in emergence of fear. Hypothalamic orexin neurons are activated by fearful stimuli to evoke a 'defense reaction' with an increase in arousal level and sympathetic outflow to deal with the imminent danger. However, how this system contributes to the emergence of fear-related behavior is not well understood. Orexin neurons in the hypothalamus send excitatory innervations to noradrenergic neurons in the locus coeruleus (NALC) which express orexin receptor 1 (OX1R) and send projections to the lateral amygdala (LA). Inhibition of this di-synaptic orexin → NALC → LA pathway by pharmacological or opto/chemogenetic methods reduces cue-induced fear expression. Excitatory manipulation of this pathway induces freezing, a fear-related behavior that only occurs when the environment contains some elements suggestive of danger. Although, fear memory helps animals respond to a context or cue previously paired with an aversive stimulus, fear-related behavior is sometimes evoked even in a distinct context containing some similar elements, which is known as fear generalization. Our recent observation suggests that the orexin → NALC → LA pathway might contribute to this response. This review focuses on recent advances regarding the role of hypothalamic orexin neurons in behavioral fear expression. We also discuss the potential effectiveness of orexin receptor antagonists for treating excessive fear response or overgeneralization seen in anxiety disorder and post-traumatic stress disorder (PTSD).


Subject(s)
Adrenergic Neurons/physiology , Fear/physiology , Hypothalamus/physiology , Locus Coeruleus/physiology , Memory/physiology , Orexins/physiology , Animals , Basolateral Nuclear Complex/physiology , Conditioning, Classical , Humans , Neural Pathways/physiology , Orexin Receptors/physiology
7.
J Vis Exp ; (148)2019 06 19.
Article in English | MEDLINE | ID: mdl-31282883

ABSTRACT

In recent years, optogenetics has been widely used in many fields of neuroscientific research. In many cases, an opsin, such as channel rhodopsin 2 (ChR2), is expressed by a virus vector in a particular type of neuronal cells in various Cre-driver mice. Activation of these opsins is triggered by application of light pulses which are delivered by laser or LED through optic cables, and the effect of activation is observed with very high time resolution. Experimenters are able to acutely stimulate neurons while monitoring behavior or another physiological outcome in mice. Optogenetics can enable useful strategies to evaluate function of neuronal circuits in the regulation of sleep/wakefulness states in mice. Here we describe a technique for examining the effect of optogenetic manipulation of neurons with a specific chemical identity during electroencephalogram (EEG) and electromyogram (EMG) monitoring to evaluate the sleep stage of mice. As an example, we describe manipulation of GABAergic neurons in the bed nucleus of the stria terminalis (BNST). Acute optogenetic excitation of these neurons triggers a rapid transition to wakefulness when applied during NREM sleep. Optogenetic manipulation along with EEG/EMG recording can be applied to decipher the neuronal circuits that regulate sleep/wakefulness states.


Subject(s)
Nerve Net/physiology , Sleep/physiology , Wakefulness/physiology , Action Potentials , Animals , GABAergic Neurons/physiology , Mice , Mice, Transgenic , Optogenetics , Septal Nuclei/cytology
8.
Nat Commun ; 10(1): 2637, 2019 06 14.
Article in English | MEDLINE | ID: mdl-31201332

ABSTRACT

The brain stores and recalls memories through a set of neurons, termed engram cells. However, it is unclear how these cells are organized to constitute a corresponding memory trace. We established a unique imaging system that combines Ca2+ imaging and engram identification to extract the characteristics of engram activity by visualizing and discriminating between engram and non-engram cells. Here, we show that engram cells detected in the hippocampus display higher repetitive activity than non-engram cells during novel context learning. The total activity pattern of the engram cells during learning is stable across post-learning memory processing. Within a single engram population, we detected several sub-ensembles composed of neurons collectively activated during learning. Some sub-ensembles preferentially reappear during post-learning sleep, and these replayed sub-ensembles are more likely to be reactivated during retrieval. These results indicate that sub-ensembles represent distinct pieces of information, which are then orchestrated to constitute an entire memory.


Subject(s)
Hippocampus/physiology , Memory/physiology , Neurons/physiology , Animals , Brain Mapping/methods , Female , Hippocampus/cytology , Intravital Microscopy/methods , Luminescent Proteins/chemistry , Male , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Transgenic , Microscopy, Fluorescence/methods , Models, Animal , Optical Imaging/methods , Optogenetics/methods , Sleep/physiology
9.
Nat Commun ; 9(1): 2041, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29795268

ABSTRACT

Innate behaviors are genetically encoded, but their underlying molecular mechanisms remain largely unknown. Predator odor 2,4,5-trimethyl-3-thiazoline (TMT) and its potent analog 2-methyl-2-thiazoline (2MT) are believed to activate specific odorant receptors to elicit innate fear/defensive behaviors in naive mice. Here, we conduct a large-scale recessive genetics screen of ethylnitrosourea (ENU)-mutagenized mice. We find that loss of Trpa1, a pungency/irritancy receptor, diminishes TMT/2MT and snake skin-evoked innate fear/defensive responses. Accordingly, Trpa1 -/- mice fail to effectively activate known fear/stress brain centers upon 2MT exposure, despite their apparent ability to smell and learn to fear 2MT. Moreover, Trpa1 acts as a chemosensor for 2MT/TMT and Trpa1-expressing trigeminal ganglion neurons contribute critically to 2MT-evoked freezing. Our results indicate that Trpa1-mediated nociception plays a crucial role in predator odor-evoked innate fear/defensive behaviors. The work establishes the first forward genetics screen to uncover the molecular mechanism of innate fear, a basic emotion and evolutionarily conserved survival mechanism.


Subject(s)
Behavior, Animal/physiology , Fear/physiology , Instinct , Smell/physiology , TRPA1 Cation Channel/physiology , Animals , Female , Genotyping Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutagenesis , Neurons/physiology , Nociception/physiology , Odorants , Thiazoles/chemistry , Trigeminal Ganglion/cytology , Trigeminal Ganglion/physiology
10.
Nat Commun ; 8(1): 1606, 2017 11 20.
Article in English | MEDLINE | ID: mdl-29151577

ABSTRACT

Emotionally salient information activates orexin neurons in the lateral hypothalamus, leading to increase in sympathetic outflow and vigilance level. How this circuit alters animals' behavior remains unknown. Here we report that noradrenergic neurons in the locus coeruleus (NALC neurons) projecting to the lateral amygdala (LA) receive synaptic input from orexin neurons. Pharmacogenetic/optogenetic silencing of this circuit as well as acute blockade of the orexin receptor-1 (OX1R) decreases conditioned fear responses. In contrast, optogenetic stimulation of this circuit potentiates freezing behavior against a similar but distinct context or cue. Increase of orexinergic tone by fasting also potentiates freezing behavior and LA activity, which are blocked by pharmacological blockade of OX1R in the LC. These findings demonstrate the circuit involving orexin, NALC and LA neurons mediates fear-related behavior and suggests inappropriate excitation of this pathway may cause fear generalization sometimes seen in psychiatric disorders, such as PTSD.


Subject(s)
Fear , Locus Coeruleus/metabolism , Neurons/metabolism , Orexins/metabolism , Stress Disorders, Post-Traumatic/metabolism , Stress Disorders, Post-Traumatic/psychology , Adrenergic Neurons/metabolism , Animals , Behavior, Animal , Humans , Male , Mice , Orexin Receptors/genetics , Orexin Receptors/metabolism , Orexins/genetics , Stress Disorders, Post-Traumatic/genetics
11.
J Neurosci ; 37(30): 7164-7176, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28642284

ABSTRACT

Emotionally salient situations usually trigger arousal along with autonomic and neuroendocrine reactions. To determine whether the extended amygdala plays a role in sleep-wakefulness regulation, we examined the effects of optogenetic and pharmacogenetic excitation of GABAergic neurons in the bed nucleus of the stria terminalis (GABABNST neurons). Acute optogenetic excitation of these cells during nonrapid eye movement (NREM) sleep resulted in an immediate state transition to wakefulness, whereas stimulation during REM sleep showed no effect on sleep-wakefulness states in male mice. An anterograde tracing study suggested GABABNST neurons send axonal projections to several brain regions implicated in arousal, including the preoptic area, lateral hypothalamus, periaqueductal gray, deep mesencephalic nucleus, and parabrachial nucleus. A dual orexin receptor antagonist, DORA-22, did not affect the optogenetic transition from NREM sleep to wakefulness. Chemogenetic excitation of GABABNST neurons evoked a sustained wakefulness state, but this arousal effect was markedly attenuated by DORA-22. These observations suggest that GABABNST neurons play an important role in transition from NREM sleep to wakefulness without the function of orexin neurons, but prolonged excitation of these cells mobilizes the orexin system to sustain wakefulness.SIGNIFICANCE STATEMENT We examined the role of the bed nucleus of the stria terminalis (BNST) in the regulation of wakefulness. Optogenetic excitation of GABAergic neurons in the BNST (GABABNST neurons) during nonrapid eye movement (NREM) sleep in mice resulted in immediate transition to a wakefulness state without function of orexins. Prolonged excitation of GABABNST neurons by a chemogenetic method evoked a longer-lasting, sustained wakefulness state, which was abolished by preadministration of a dual orexin receptor antagonist, DORA-22. This study revealed a role of the BNST GABAergic system in sleep-wakefulness control, especially in shifting animals' behavioral states from NREM sleep to wakefulness, and provides an important insight into the pathophysiology of insomnia and the role of orexin in arousal regulation.


Subject(s)
Action Potentials/physiology , Arousal/physiology , GABAergic Neurons/physiology , Septal Nuclei/physiology , Sleep Stages/physiology , Wakefulness/physiology , Animals , Behavior, Animal/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Net/physiology
12.
PLoS One ; 11(11): e0164716, 2016.
Article in English | MEDLINE | ID: mdl-27835635

ABSTRACT

How the hypothalamus transmits hunger information to other brain regions to govern whole brain function to orchestrate feeding behavior has remained largely unknown. Our present study suggests the importance of a recently found lateral hypothalamic neuropeptide, QRFP, in this signaling. Qrfp-/- mice were hypophagic and lean, and exhibited increased anxiety-like behavior, and were hypoactive in novel circumstances as compared with wild type littermates. They also showed decreased wakefulness time in the early hours of the dark period. Histological studies suggested that QRFP neurons receive rich innervations from neurons in the arcuate nucleus which is a primary region for sensing the body's metabolic state by detecting levels of leptin, ghrelin and glucose. These observations suggest that QRFP is an important mediator that acts as a downstream mediator of the arcuate nucleus and regulates feeding behavior, mood, wakefulness and activity.


Subject(s)
Anxiety/genetics , Arcuate Nucleus of Hypothalamus/metabolism , Feeding Behavior , Neurons/metabolism , Peptides/genetics , Wakefulness/physiology , Animals , Anxiety/metabolism , Anxiety/physiopathology , Arcuate Nucleus of Hypothalamus/physiopathology , Eating/physiology , Gene Expression , Ghrelin/genetics , Ghrelin/metabolism , Glucose/metabolism , Intercellular Signaling Peptides and Proteins , Leptin/genetics , Leptin/metabolism , Locomotion , Male , Mice , Mice, Knockout , Neurons/pathology , Peptides/deficiency , Signal Transduction
13.
Front Behav Neurosci ; 9: 324, 2015.
Article in English | MEDLINE | ID: mdl-26696848

ABSTRACT

Neuropeptides orexin A and orexin B, which are exclusively produced by neurons in the lateral hypothalamic area, play an important role in the regulation of a wide range of behaviors and homeostatic processes, including regulation of sleep/wakefulness states and energy homeostasis. The orexin system has close anatomical and functional relationships with systems that regulate the autonomic nervous system, emotion, mood, the reward system, and sleep/wakefulness states. Recent pharmacological studies using selective antagonists have suggested that orexin receptor-1 (OX1R) is involved in physiological processes that regulate emotion, the reward system, and autonomic nervous system. Here, we examined Ox1r (-/-) mice with a comprehensive behavioral test battery to screen additional OX1R functions. Ox1r (-/-) mice showed increased anxiety-like behavior, altered depression-like behavior, slightly decreased spontaneous locomotor activity, reduced social interaction, increased startle response, and decreased prepulse inhibition. These results suggest that OX1R plays roles in social behavior and sensory motor gating in addition to roles in mood and anxiety.

14.
Neurochem Res ; 40(7): 1333-40, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26037553

ABSTRACT

Brain glycogen stored in astrocytes, a source of lactate as a neuronal energy source, decreases during prolonged exercise with hypoglycemia. However, brain glycogen dynamics during exercise without hypoglycemia remain unknown. Since intense exercise increases brain noradrenaline and serotonin as known inducers for brain glycogenolysis, we hypothesized that brain glycogen decreases with intense exercise not accompanied by hypoglycemia. To test this hypothesis, we employed a well-established acute intense exercise model of swimming in rats. Rats swam for fourteen 20 s bouts with a weight equal to 8 % of their body mass and were sacrificed using high-power (10 kW) microwave irradiation to inactivate brain enzymes for accurate detection of brain glycogen and monoamines. Intense exercise did not alter blood glucose, but did increase blood lactate levels. Immediately after exercise, brain glycogen decreased and brain lactate increased in the hippocampus, cerebellum, cortex, and brainstem. Simultaneously, serotonin turnover in the hippocampus and brainstem mutually increased and were associated with decreased brain glycogen. Intense swimming exercise that does not induce hypoglycemia decreases brain glycogen associated with increased brain lactate, implying an importance of glycogen in brain energetics during intense exercise even without hypoglycemia. Activated serotonergic regulation is a possible underlying mechanism for intense exercise-induced glycogenolysis at least in the hippocampus and brainstem.


Subject(s)
Brain/metabolism , Glycogen/metabolism , Physical Conditioning, Animal , Serotonin/physiology , Animals , Male , Rats , Rats, Wistar , Swimming
15.
Brain Plast ; 1(1): 149-158, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-29765839

ABSTRACT

Exercise enhances adult hippocampal neurogenesis (AHN), although the exact nature of how this happens remains controversial. The beneficial effects of exercise vary depending upon the exercise condition, especially intensity. Most animal studies, however, have used wheel running, which only evaluates running distance (exercise volume) and does not consider intensity. In our rat model, we have found that exercise-induced neurogenesis varies depending on the intensity of the exercise and have found that exercise-enhanced neurogenesis is more pronounced with mild exercise than with moderate and/or intense exercise. This may be due, at least in part, to increased glucocorticoid (CORT) secretion. To test this hypothesis, we used our special exercise model in mice, with and without a stress response, based on the lactate threshold (LT) in which moderate exercise above the LT increases lactate and adrenocorticotropic hormone (ACTH) release, while mild exercise does not. Adult male C57BL/6J mice were subjected to two weeks of exercise training and AHN was measured with a 5-Bromo-2-deoxyuridine (BrdU) pre-injection and immunohistochemistry. The role of glucocorticoid signaling was examined using intrapertioneal injections of antagonists for the glucocorticoid receptor (GR), mifepristone, and the mineralocorticoid receptor (MR), spironolactone. We found that, while mild exercise increased AHN without elevating CORT blood levels, both MR and GR antagonists abolished mild-exercise-induced AHN, but did not affect AHN under intense exercise. This suggests a facilitative, permissive role of glucocorticoid and mineralocorticoid receptors in AHN during mild exercise (234/250).

16.
J Neurosci ; 33(36): 14549-57, 2013 Sep 04.
Article in English | MEDLINE | ID: mdl-24005305

ABSTRACT

The noradrenergic (NA) projections arising from the locus ceruleus (LC) to the amygdala and bed nucleus of the stria terminalis have been implicated in the formation of emotional memory. Since NA neurons in the LC (LC-NA neurons) abundantly express orexin receptor-1 (OX1R) and receive prominent innervation by orexin-producing neurons, we hypothesized that an OX1R-mediated pathway is involved in the physiological fear learning process via regulation of LC-NA neurons. To evaluate this hypothesis, we examined the phenotype of Ox1r(-/-) mice in the classic cued and contextual fear-conditioning test. We found that Ox1r(-/-) mice showed impaired freezing responses in both cued and contextual fear-conditioning paradigms. In contrast, Ox2r(-/-) mice showed normal freezing behavior in the cued fear-conditioning test, while they exhibited shorter freezing time in the contextual fear-conditioning test. Double immunolabeling of Fos and tyrosine hydroxylase showed that double-positive LC-NA neurons after test sessions of both cued and contextual stimuli were significantly fewer in Ox1r(-/-) mice. AAV-mediated expression of OX1R in LC-NA neurons in Ox1r(-/-) mice restored the freezing behavior to the auditory cue to a comparable level to that in wild-type mice in the test session. Decreased freezing time during the contextual fear test was not affected by restoring OX1R expression in LC-NA neurons. These observations support the hypothesis that the orexin system modulates the formation and expression of fear memory via OX1R in multiple pathways. Especially, OX1R in LC-NA neurons plays an important role in cue-dependent fear memory formation and/or retrieval.


Subject(s)
Cues , Fear , Locus Coeruleus/physiology , Memory , Receptors, Neuropeptide/metabolism , Adrenergic Neurons/metabolism , Adrenergic Neurons/physiology , Animals , Conditioning, Classical , Freezing Reaction, Cataleptic , Locus Coeruleus/cytology , Locus Coeruleus/metabolism , Mice , Mice, Knockout , Orexin Receptors , Reaction Time , Receptors, Neuropeptide/genetics
17.
J Physiol ; 589(Pt 13): 3383-93, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21521757

ABSTRACT

Brain glycogen could be a critical energy source for brain activity when the glucose supply from the blood is inadequate (hypoglycaemia). Although untested, it is hypothesized that during prolonged exhaustive exercise that induces hypoglycaemia and muscular glycogen depletion, the resultant hypoglycaemia may cause a decrease in brain glycogen. Here,we tested this hypothesis and also investigated the possible involvement of brain monoamines with the reduced levels of brain glycogen. For this purpose,we exercised male Wistar rats on a treadmill for different durations (30-120 min) at moderate intensity (20 m min⁻¹) and measured their brain glycogen levels using high-power microwave irradiation (10 kW). At the end of 30 and 60 min of running, the brain glycogen levels remained unchanged from resting levels, but liver and muscle glycogen decreased. After 120 min of running, the glycogen levels decreased significantly by ∼37-60% in five discrete brain loci (the cerebellum 60%, cortex 48%, hippocampus 43%, brainstem 37% and hypothalamus 34%) compared to those of the sedentary control. The brain glycogen levels in all five regions after running were positively correlated with the respective blood and brain glucose levels. Further, in the cortex, the levels of methoxyhydroxyphenylglycol (MHPG) and 5-hydroxyindoleacetic acid (5-HIAA), potential involved in degradation of the brain glycogen, increased during prolonged exercise and negatively correlated with the glycogen levels. These results support the hypothesis that brain glycogen could decrease with prolonged exhaustive exercise. Increased monoamines together with hypoglycaemia should be associated with the development of decreased brain glycogen, suggesting a new clue towards the understanding of central fatigue during prolonged exercise.


Subject(s)
Brain/metabolism , Glycogen/antagonists & inhibitors , Glycogen/metabolism , Physical Conditioning, Animal/methods , Physical Endurance/physiology , Animals , Blood Glucose/metabolism , Exercise Test/methods , Glycogen/biosynthesis , Male , Pilot Projects , Rats , Rats, Wistar , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...