Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Parasite Immunol ; 46(5): e13037, 2024 May.
Article in English | MEDLINE | ID: mdl-38720446

ABSTRACT

The treatment for visceral leishmaniasis (VL) causes toxicity in patients, entails high cost and/or leads to the emergence of resistant strains. No human vaccine exists, and diagnosis presents problems related to the sensitivity or specificity of the tests. Here, we tested two phage clones, B1 and D11, which were shown to be protective against Leishmania infantum infection in a murine model as immunotherapeutics to treat mice infected with this parasite species. The phages were used alone or with amphotericin B (AmpB), while other mice received saline, AmpB, a wild-type phage (WTP) or WTP/AmpB. Results showed that the B1/AmpB and D11/AmpB combinations induced polarised Th1-type cellular and humoral responses, which were primed by high levels of parasite-specific IFN-γ, IL-12, TNF-α, nitrite and IgG2a antibodies, which reflected in significant reductions in the parasite load in distinct organs of the animals when analyses were performed 1 and 30 days after the treatments. Reduced organic toxicity was also found in these animals, as compared with the controls. In conclusion, preliminary data suggest the potential of the B1/AmpB and D11/AmpB combinations as immunotherapeutics against L. infantum infection.


Subject(s)
Amphotericin B , Antibodies, Protozoan , Immunotherapy , Leishmania infantum , Leishmaniasis, Visceral , Mice, Inbred BALB C , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/drug therapy , Animals , Amphotericin B/therapeutic use , Amphotericin B/administration & dosage , Antibodies, Protozoan/blood , Leishmania infantum/immunology , Leishmania infantum/drug effects , Mice , Immunotherapy/methods , Female , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/administration & dosage , Immunoglobulin G/blood , Parasite Load , Disease Models, Animal , Cell Surface Display Techniques , Cytokines/metabolism , Th1 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...