Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(39): 45997-46009, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37733937

ABSTRACT

The interfacial properties of a planar SnO/κ-Ga2O3 p-n heterojunction have been investigated by capacitance-voltage (C-V) measurements following a methodological approach that allows consideration of significant combined series resistance and parallel leakage effects. Single-frequency measurements were carried out in both series- and parallel-model measurement configurations and then compared to the dual-frequency approach, which permits us to evaluate the depletion capacitance of diode independently of leakage conductance and series resistance. It was found that in the bias region, where the dissipation factor was low enough, they give the same results and provide reliable experimental C-V data. The doping profile extracted from the C-V data shows a nonuniformity at the junction interface that was attributed to a depletion of subsurface net donors at the n-side of the diode. This attribution was corroborated by doping profiles and carrier distributions in the n and p sides of the heterojunction obtained from the simulation of the measured C-V data by the Synopsys Sentaurus-TCAD suite. Hall effect measurements and Hg-probe C-V investigation on single κ-Ga2O3 layers, either as-grown or submitted to thermal treatments, support the hypothesis of the subsurface donor reduction during the SnO deposition. This study can shed light on the subsurface doping density variation in κ-Ga2O3 due to high-temperature treatment. The investigation of the SnO/κ-Ga2O3 heterointerface provides useful hints for the fabrication of diodes based on κ-Ga2O3. The methodological approach presented here is of general interest for reliable characterization of planar diodes.

2.
Adv Mater ; 34(37): e2203954, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35900293

ABSTRACT

Growth of Cu(In,Ga)Se2 (CIGS) absorbers under Cu-poor conditions gives rise to incorporation of numerous defects into the bulk, whereas the same absorber grown under Cu-rich conditions leads to a stoichiometric bulk with minimum defects. This suggests that CIGS absorbers grown under Cu-rich conditions are more suitable for solar cell applications. However, the CIGS solar cell devices with record efficiencies have all been fabricated under Cu-poor conditions, despite the expectations. Therefore, in the present work, both Cu-poor and Cu-rich CIGS cells are investigated, and the superior properties of the internal interfaces of the Cu-poor CIGS cells, such as the p-n junction and grain boundaries, which always makes them the record-efficiency devices, are shown. More precisely, by employing a correlative microscopy approach, the typical fingerprints for superior properties of internal interfaces necessary for maintaining a lower recombination activity in the cell is discovered. These are a Cu-depleted and Cd-enriched CIGS absorber surface, near the p-n junction, as well as a negative Cu factor (∆ß) and high Na content (>1.5 at%) at the grain boundaries. Thus, this work provides key factors governing the device performance (efficiency), which can be considered in the design of next-generation solar cells.

3.
Nat Commun ; 10(1): 3980, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31484943

ABSTRACT

The properties and performance of polycrystalline materials depend critically on the properties of their grain boundaries. Polycrystalline photovoltaic materials - e.g. hybrid halide perovskites, copper indium gallium diselenide (CIGSe) and cadmium telluride - have already demonstrated high efficiencies and promise cost-effective electricity supply. For CIGSe-based solar cells, an efficiency above 23% has recently been achieved using an alkali-fluoride post-deposition treatment; however, its full impact and functional principle are not yet fully understood. Here, we show direct evidence for the passivation of grain boundaries in CIGSe treated with three different alkali-fluorides through a detailed study of the nanoscale optoelectronic properties. We determine a correlation of the surface potential change at grain boundaries with the open-circuit voltage, which is supported by numerical simulations. Our results suggest that heavier alkali elements might lead to better passivation by reducing the density of charged defects and increasing the formation of secondary phases at grain boundaries.

4.
Sci Technol Adv Mater ; 19(1): 871-882, 2018.
Article in English | MEDLINE | ID: mdl-30479675

ABSTRACT

Structural defects such as voids and compositional inhomogeneities may affect the performance of Cu(In,Ga)Se2 (CIGS) solar cells. We analyzed the morphology and elemental distributions in co-evaporated CIGS thin films at the different stages of the CIGS growth by energy-dispersive x-ray spectroscopy in a transmission electron microscope. Accumulation of Cu-Se phases was found at crevices and at grain boundaries after the Cu-rich intermediate stage of the CIGS deposition sequence. It was found, that voids are caused by Cu out-diffusion from crevices and GBs during the final deposition stage. The Cu inhomogeneities lead to non-uniform diffusivities of In and Ga, resulting in lateral inhomogeneities of the In and Ga distribution. Two and three-dimensional simulations were used to investigate the impact of the inhomogeneities and voids on the solar cell performance. A significant impact of voids was found, indicating that the unpassivated voids reduce the open-circuit voltage and fill factor due to the introduction of free surfaces with high recombination velocities close to the CIGS/CdS junction. We thus suggest that voids, and possibly inhomogeneities, limit the efficiency of solar cells based on three-stage co-evaporated CIGS thin films. Passivation of the voids' internal surface may reduce their detrimental effects.

5.
Nano Lett ; 15(5): 3334-40, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25844923

ABSTRACT

Concepts of localized contacts and junctions through surface passivation layers are already advantageously applied in Si wafer-based photovoltaic technologies. For Cu(In,Ga)Se2 thin film solar cells, such concepts are generally not applied, especially at the heterojunction, because of the lack of a simple method yielding features with the required size and distribution. Here, we show a novel, innovative surface nanopatterning approach to form homogeneously distributed nanostructures (<30 nm) on the faceted, rough surface of polycrystalline chalcogenide thin films. The method, based on selective dissolution of self-assembled and well-defined alkali condensates in water, opens up new research opportunities toward development of thin film solar cells with enhanced efficiency.


Subject(s)
Alkalies/chemistry , Nanostructures/chemistry , Solar Energy , Sunlight , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...